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in children. Overnight oximetry linked via Bluetooth to a smartphone and cloud algorithm provides
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ABSTRACT The ability of a cloud-driven Bluetooth oximetry-based algorithm to diagnose obstructive
sleep apnoea syndrome (OSAS) was examined in habitually snoring children concurrently undergoing
overnight polysomnography.

Children clinically referred for overnight in-laboratory polysomnographic evaluation for suspected
OSAS were simultaneously hooked to a Bluetooth oximeter linked to a smartphone. Polysomnography
findings were scored and the apnoea/hypopnoea index (AHIPSG) was tabulated, while oximetry data
yielded an estimated AHIOXI using a validated algorithm.

The accuracy of the oximeter in identifying correctly patients with OSAS in general, or with mild (AHI
1-5 events:h™!), moderate (5-10 eventsh™) or severe (>10 events-h™') OSAS was examined in 432
subjects (6.5+3.2 years), with 343 having AHIPsG >1 event-h™". The accuracies of AHIOXI were consistently
>79% for all levels of OSAS severity, and specificity was particularly favourable for AHI >10 events-h™*
(92.7%). Using the criterion of AHIPSG >1 eventh™', only 4.7% of false-negative cases emerged, from
which only 0.6% of cases showed moderate or severe OSAS.

Overnight oximetry processed via Bluetooth technology by a cloud-based machine learning-derived
algorithm can reliably diagnose OSAS in children with clinical symptoms suggestive of the disease. This
approach provides virtually limitless scalability and should alleviate the substantial difficulties in accessing
paediatric sleep laboratories while markedly reducing the costs of OSAS diagnosis.
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Introduction

Obstructive sleep apnoea/hypopnoea syndrome (OSAS) has emerged in recent decades as a highly
prevalent disease in children all over the world, and is estimated to affect 2-5% of all children. However,
the cardinal symptom of OSAS in children is habitual snoring, which affects a much higher proportion of
children (range 6-25%). Furthermore, paediatric OSAS has been consistently associated with increased risk
of major end-organ adverse consequences affecting neurocognitive, behavioural, cardiovascular and
metabolic systems, ultimately resulting in overall declines in health and quality of life, as well as increased
healthcare costs [1-4]. Based on current guidelines, nocturnal polysomnography (PSG) in an accredited
sleep laboratory is considered the gold-standard approach to diagnose OSAS in children [1, 5, 6].
However, the scarcity of paediatric sleep laboratories around the world, the elevated costs of PSG and their
labour-intensive nonscalable characteristics, and the obvious inconvenience to parents and children have
led to the unfortunate reality that only a minute proportion of symptomatic habitually snoring children
are evaluated objectively before undergoing adenotonsillectomy, the first line of therapy (7, 8].

In an effort to overcome these problems and expand the accessibility and objectivity of OSAS diagnosis,
many alternative methodologies have been developed, ranging from questionnaires to simplified
multichannel studies, and even exploration of diagnostic biomarker panels [9-13]. Nocturnal oximetry was
proposed initially as a screening tool for OSAS in symptomatic children [11, 13], and this approach has
gained increasing popularity despite exhibiting favourable specificity yet limited sensitivity, while also
being marred by interscorer reliability issues, particularly at the low end of OSAS severity, as well as
scalability concerns [11]. To overcome these issues, several investigative groups including ours have
proposed a variety of automated procedures that circumvent the subjectivity of oximetry recording
interpretation [14-28]. In this context, we have reported on the application of machine-learning
procedures in the analysis of nocturnal oximetry recordings among children referred for clinical evaluation
of suspected OSAS, and the derivation and validation of a diagnostic algorithm in a very large cohort of
>4000 children [29]. Here, we furthered our quest for a scorer-independent scalable diagnostic approach of
paediatric OSAS by exploring and comparing the diagnostic performance of a Bluetooth-enabled oximeter
coupled to a smartphone for data transmission and derivation of the estimated apnoea/hypopnoea using a
cloud-based algorithm when tested concurrent with a PSG study in the laboratory.

Patients and methods

Subjects

Consecutive, otherwise healthy, habitually snoring symptomatic children (>3 nights per week) aged 2-15 years
who were referred for suspected OSAS were recruited from Beijing Children’s Hospital, Capital Medical
University (Beijing, China) between June 1, 2017 and June 1, 2018. All participants underwent an overnight
PSG evaluation while concurrently wearing a commercially and readily available Bluetooth oximeter linked to
an Android smartphone via a custom designed application (Serenium, Palo Alto, CA, USA). Written
informed consent and assent were obtained from parents and children, respectively (for children aged
>7 years). The study was approved by the ethics committee of Beijing Children’s Hospital affiliated to Capital
Medical University (protocol #2017-151), and received approval for processing of the de-identified oximetry
recordings from the University of Chicago human subject committee ( protocol #IRB14-1241).

Exclusion criteria

Children who were known to be suffering from congenital heart disease, systemic or pulmonary
hypertension, diabetes mellitus or dyslipidaemia, those with craniofacial anomalies, neuromuscular disease
or defined genetic syndromes were excluded. In addition, children with any known acute or chronic
illness, or who received previous treatment for OSAS were excluded. Children with recordings from either
PSG or Bluetooth oximeter lasting <3 h were excluded.

Anthropometry

All children were weighed on a calibrated scale and their weights were recorded to the nearest 0.1 kg. Height
(to 0.1 cm) was measured using a stadiometer. The body mass index (BMI) and BMI z-score were calculated
using Chinese normative datasets [30]. The definition of obesity in our study was BMI z-score >1.65.

Polysomnography

Children were monitored during the PSG using a digital acquisition system (Compumedics E; Compumedics,
Melbourne, Australia or ALICE 5; Philips Respironics, Amsterdam, the Netherlands). No coffee, tea,
cola-containing products or sedative hypnotics were taken before sleep. Total sleep time was >7.5h. PSG
monitoring included the following parameters: electroencephalogram from four leads (C3/A2, C4/A1, O1/A2,
02/A3), bilateral electro-oculogram, electromyogram of mentalis activity and bilateral anterior tibialis, chest
and abdominal movements, ECG, arterial oxyhaemoglobin saturation and plethysmographic signal by pulse
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oximetry, air flow thermistor and nasal pressure cannula, snoring sensor and body position. Sleep data were
scored manually by experienced paediatric PSG technicians according to the scoring manual published by the
American Academy of Sleep Medicine (AASM) [31]. Oxygen desaturation index (ODI3%) was defined as
the number of >3% arterial oxygen desaturations per hour of sleep. The definition of arousal was based on
the AASM guidelines. The diagnosis of children with OSAS was defined by the presence of an obstructive
apnoea/hypopnoea index (AHIPSG) >1 eventh™" of total sleep time according to the most frequent clinical
practice, as described in the 2012 American Academy of Pediatrics consensus guideline for the diagnosis and
management of childhood OSAS [1]. Primary snoring was defined as AHI <1 eventh™". Mild OSAS was
defined as AHIPSG >1eventh™' and AHIPSG <5 eventsh™, moderate OSAS was defined as AHIPSG
>5 eventsh™' and severe OSAS was defined as AHIPSG >10 eventsh ™.

Oximetry data processing

Oximetry signals from the Bluetooth oximeter were transferred via the smartphone to the cloud and were
all rounded to the second decimal place. Artefacts were then automatically removed according to the
method proposed by MAGALANG et al. [32]. Signals were automatically processed using the algorithm
previously developed and validated [29], which consisted of a multilayer perceptron (MLP) model with the
ability to estimate AHI automatically. MLP constitutes an artificial neural network that is typically
arranged in three layers of mathematical units called neurons: input, hidden and output [29], and Matlab
R2016b (MathWorks, Cambridge, UK) was used to implement feature extraction and classification stages.
Accordingly, an estimate of the AHI was computed (AHIOXI), and compared with AHIPSG.

Statistical analyses

SPSS Statistics software (version 20; IBM, Chicago, IL, USA) was used, and data are presented as meansp.
Intraclass correlation coefficient (ICC) was used to directly assess the agreement between the AHIPSG and
AHIox1, as well as Bland-Altman and Cohen’s k [33]. In addition, the diagnostic performance for three
cut-offs (AHI 1 eventh™, 5 events-h™" and 10 events:h™") was assessed by means of sensitivity, specificity,
positive likelihood ratio (LR"), negative likelihood ratio (LR™) and accuracy. Plotting of the LR values was
performed using a freely available web-based calculator developed by Alan Schwartz (http://araw.mede.uic.
edu/cgi-bin/testcalc.pl?DT=&Dt=&dT=&dt=&2x2=Compute). For comparisons of continuous variables
across clinical groupings, Kruskal-Wallis (nonparametric) or Mann-Whitney tests were used as
appropriate. For comparisons of discrete variables, a Chi-squared test was used. A p-value <0.05 was
considered to be indicative of statistical significance.

Results

432 children completed the study out of 435 who were approached and agreed to participate. The reasons
for inability to complete the study was related to intolerance of the PSG equipment by the three very
young children (ages 2 years, 2.5 years and 3 years), which led to them spending most of the recording
time awake or without an appropriate PSG recording montage. Table 1 provides the demographic and
anthropometric characteristics of the cohort as well as their PSG findings.

TABLE 1 Demographic, anthropometric and polysomnographic characteristics of 432 symptomatic habitually snoring Chinese
children undergoing overnight polysomnography and concurrent Bluetooth oximetry for suspected obstructive sleep apnoea
syndrome (OSAS)

All participants Primary snoring O0SAS AHlpsc O0SAS AHlpse
AHlpse <1 event-h™! >1 event-h™’ >5 events-h '

Subjects 432 89 343 171
Age years 6.3+2.5 6.5+2.4 6.3+2.6 6.4%2.5
Male % 65.3 62.8 69.4 64.5%
BMI (% obese) 17.84.5 (26.3) 16.6+3.9 (23.2) 18.3+4.7 (26.7) 19.25.4 (33.1)**
Total sleep time min 474L.1454.4 460.4£72.2 478.1£47.8 471.7+48.4
Sleep efficiency % 83.5+8.6 83.7+8.9 83.5+8.6 82.2+8.8
AHI events-h~' [median; IQR) 10.0£21.3 (3; 8.1) 0.5+0.3 (0.5; 0.5) 11.4+23.3 (4.5; 9.6) 22.3+29.6 (12.2; 16.4)*
0Dbk% events-h ' 6.716.2 0.2+0.7 8.3+17.7 14.8+21.4%
Spo, nadir 89.8+7.2 94.3+2.0 88.6+7.6 85.2+9.0%

Data are presented as n or meanzsp, unless otherwise stated. AHIPSG: apnoea/hypopnoea index measured using polysomnography; BMI: body
mass index; AHI: apnoea/hypopnoea index; IQR: interquartile range; ODI3%: oxygen desaturation index (the number of >3% arterial oxygen
desaturations per hour of sleep); Spo,: arterial oxygen saturation measured by pulse oximetry. **: p<0.01 versus all others; #. p<0.0001 versus
primary snoring.
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FIGURE 1 Bland-Altman plot comparing polysomnography apnoea/hypopnoea index (AHIPsG) with the
estimated AHloxi from a portable Bluetooth oximeter using a cloud-based algorithm.

Figure 1 displays the Bland-Altman plot comparing the AHIPSG of the subjects with their corresponding
and AHIOXI estimation from the oximeter data concurrently acquired during their PSG testing. In
addition, a low mean positive difference (slight AHI underestimation by the algorithm) is apparent, with
95% confidence intervals within (—40.5-35.3), which reflects the dispersion that occurs when AHIPSG
values are very high, indicative of extremely severe OSAS. In addition, a high ICC is reached (0.317).

Table 2 and figure 2 show the confusion matrix comparing the classification derived from the AHIPSG
with the classification achieved by the cloud-based algorithm based on oximetry alone, ie. AHIOXI.
Accordingly, Cohen’s x was 0.339. In addition, table 2 displays sensitivity, specificity, LR and LR~ for the
AHI 1 event-h™!, 5 events-h™! and 10 events-h™! cut-offs, derived from the confusion matrix, and figure 3

TABLE 2 Confusion matrix showing the classification agreement of Bluetooth oximeter cloud-based algorithm-calculated
apnoea/hypopnoea index (AHI) estimate and the nocturnal polysomnography (PSG)-derived AHI (AHIPSG) in 432 symptomatic
habitually snoring Chinese children undergoing overnight polysomnography and concurrent Bluetooth oximetry (OXI) for
suspected obstructive sleep apnoea

AHloxi Sensitivity Specificity Accuracy LR*
<1eventh™' 1-5eventssh™' 5-10 events-h~' >10events-h~' Nocturnal PSG
AHlpsc
<1 event-h™ 17 66 4 2 89
1-5 events-h™! 14 113 41 4 172
5-10 events-h™" 2 22 27 18 69
>10 events-h™’ 0 14 13 75 102
Nocturnal OXI 33 215 85 99 432
Cohen’s k 0.339
AHI
1 event-h™ 95.3 19.1 79.6 1.18
5 events-h™" 77.8 80.5 79.4 3.99
10 events-h™" 73.5 92.7 88.2 10.07
LR™: positive likelihood ratio.
3
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FIGURE 2 Schematic representation of apnoea/hypopnoea index (AHI) oximetry algorithm performance and corresponding likelihood ratios relative
to polysomnography-derived AHI when diagnostic cut-off values are set at a] 1 event-h™', b) 5 events-h™" or c] 10 events-h™".

displays the receiver operator curves for each of these cut-off values. AHIOXI showed increasing degrees of
diagnostic ability as the cut-off increased and became <90% specific at AHI cut-off of 10 eventsh™'.
Accuracies remained >79% at all cut-off levels with LR" displaying optimal performance for AHI of
>5 events-h ™.

Discussion

This study shows that a previously developed and validated neural network machine-learning algorithm
based on overnight oximetry recordings [29] can be readily and accurately implemented as a readily
scalable operator-independent diagnostic tool for the diagnosis of OSAS in symptomatic children referred
for evaluation of OSAS.

Before we discuss the clinical implications of current findings, several methodological issues deserve
mention. First, only a single commercially available oximeter model was employed for the present study,
and displays industry standard accuracy. In this context, awareness of the potential imprecision of the
oximeter being selected and employed during implementation of the approach used in the present study is
obviously of great importance [34]. Similarly, the potential imprecisions introduced by the finger probe
being selected should also be accounted for in materials and supplies selection [35]. However, we should
also remark that the heterogeneity of the oximeters and their intrinsic performances was incorporated into
the process of derivation and validation of the cloud-based algorithm, and included 13 different paediatric
sleep centres around the world using vastly different oximeters and oximeter data-sampling frequencies
[29]. Furthermore, the oximeters used in the PSG and the wearable Bluetooth oximeter were different in
this study, but achieved concordance in the scored and automatically detected ODI3%, respectively
(r2=0.35; data not shown). Second, while we attribute the designation of “gold standard” to the PSG, there
can be considerable night-to-night variability, particularly in sleep architecture, embedded in the test [36,
38], which may lead to substantial imprecision in the diagnostic decision, particularly at the low end of
OSAS severity [38, 39]. Although not immediately relevant to this study, since both PSG and Bluetooth
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oximetry were implemented concurrently, we should point out that this issue has arisen, albeit
inconsistently, in oximetry recordings in children, prompting the recommendation that if a single night
yields a negative result in a patient with a high pretest probability, then the addition of two further nights
of oximetry recordings should lead to a more reliable clinical decision. [40, 41]. Such an approach would
be highly feasible with ambulatory oximetry, but impossible with PSG, such that if the accuracies of
oximetry-based approaches were virtually indistinguishable from PSG, there would be inherent advantages
at using oximetry in this context.

Overall, the accuracy of the portable oximeter cloud-based algorithm dyad was >79% for AHI estimates of
1-10 events-h™, and displayed the anticipated progressive declines in sensitivity with increasing AHI
cut-off values to higher specificity at an AHI cut-off of 5 eventsh™' (table 2). Thus, and as previously
inferred during the process of developing the algorithm, optimal benefits of this automated
methodological approach to diagnose OSAS in habitually snoring children [29] is achieved with AHI
>5 eventsh™'. This cut-off value not only corresponds to a virtually universally agreed-upon equipoise
criterion for surgical adenotonsillectomy, but is also associated with an upward inflexion in morbidity
risks in children with OSAS [42-44]. However, note that the adoption of the AHI 1 eventh™" cut-off
would lead to relatively high rate of false positives, which would then be treated even if their AHIPSG
would have been <1 event-h™'. Conversely, the false negative rate of our approach was small, as illustrated
by the fact that using the criterion of AHIPSG >1 eventh™, only 4.7% of false negative cases emerged,
from which only 0.6% of cases would be in the moderate or severe OSAS category. The relatively small
proportion of children that would be missed using oximetry-based diagnostics might be further reduced
by repeating the oximetry-based test for one or more additional consecutive nights [41], an issue that
clearly deserves further exploration in future studies. Furthermore, repeating the test within weeks or
months if the child’s symptoms persisted would be much more readily achievable than repeating PSG.
Thus, the clinical management options and algorithms offered by the PSG, whereby the AHI serves as one
of the major parameters guiding clinical intervention, would be indistinguishably afforded by the AHIOXI,
albeit at a fraction of the cost and effort.

As alluded previously, the overall scarcity and labour-intensive and financially onerous nature of PSG has
prompted the exploration of multiple other suitable diagnostic alternative approaches ranging from
questionnaires to ambulatory PSG or to simplified multichannel recordings [45]. However, some such
approaches, e.g. respiratory polygraphy, are becoming increasingly accepted as a surrogate diagnostic test
in children, despite their reduced accuracy at the low end of the OSAS severity spectrum [10], a limitation
that has prompted a lack of endorsement by the AASM [46]. In the present study, our findings clearly
show that automated analysis of nocturnal oximetry provides a useful approach to the diagnosis of OSAS
among high pretest symptomatic children being referred for evaluation of suspected OSAS. Indeed, and
according to the protocol proposed in our previous study which as mentioned above proposed a cut-off of
AHI >5 events-h™ [29], OSAS would have been discarded in 38 children, most of them with AHIPSG
<5eventsh™'. In addition, we should remark that several of these children would potentially require
treatment anyway, due to concurrent SDB-related morbidity. In addition, 184 subjects would be referred
for treatment, with 96.7% showing mild OSAS. Such an approach would clearly reduce the need for
conventional PSG, a finding that is coherent with our previous results [29], whereby 77.8% children with
moderate-to-severe OSAS based on PSG would be identified as such by oximetry coupled to a mobile
phone app interfaced with a cloud-based algorithm. Our findings are in close agreement with the
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approach and conclusions from a recent study by Papapakis et al. [47], in which oximetry approaches
consisting of ODI3% >3.5 events-h™ successfully predicted post-surgical intervention outcomes.

In summary, this study provides initial confirmatory demonstration that diagnostic precision can be
readily achieved via a portable oximeter linked via a smartphone to a cloud-based automated analytic
algorithm. This approach offers not only a valid alternative to standard PSG in the context of childhood
OSAS, but also that it is a highly scalable, i.e. incorporates the ability to seamlessly continue to deliver the
desired service, in this case oximetry-based diagnostics, in the context of increasing demands in order to
meet a user need without requiring additional expert personnel (current rate-limiting factor), and therefore
should serve as a remarkably affordable option. Therefore, integrated collection of ambulatory nocturnal
oximetry signals and their automated processing by well validated algorithms as the one employed herein,
should lead to accurate and widely implementable diagnostic tools for childhood OSAS, thereby enabling
timely objective evaluation and treatment with the attendant downstream benefits of reduced morbidity.
Inasmuch as the current findings are promising, expanded implementation of the current system to the
domiciliary venues and its real life performance in the clinical setting will need to be critically investigated
and confirmed.
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