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ABSTRACT  Acetylcholine binds to muscarinic receptors to play a key role in the pathophysiology of
asthma, leading to bronchoconstriction, increased mucus secretion, inflammation and airway remodelling.
Anticholinergics are muscarinic receptor antagonists that are used in the treatment of chronic obstructive
pulmonary disease and asthma. Recent in vivo and in vitro data have increased our understanding of how
acetylcholine contributes to the disease manifestations of asthma, as well as elucidating the mechanism of
action of anticholinergics. This review assesses the latest literature on acetylcholine in asthma
pathophysiology, with a closer look at its role in airway inflammation and remodelling. New insights into
the mechanism of action of anticholinergics, their effects on airway remodelling, and a review of the
efficacy and safety of long-acting anticholinergics in asthma treatment will also be covered, including a
summary of the latest clinical trial data.
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Introduction

Acetylcholine is the predominant parasympathetic neurotransmitter in the airways [1], and plays a key role
in the pathophysiology of obstructive airway diseases, such as asthma, through bronchial smooth muscle
contraction and mucus secretion [2]. Pre-clinical evidence supports an additional role in airway
inflammation and remodelling [3]. Acetylcholine binds to muscarinic receptors [2, 3], making these
receptors an attractive target for respiratory disease therapy, such as in asthma.

Anticholinergics are muscarinic receptor antagonists that have been used to treat chronic obstructive
pulmonary disease (COPD) for several years and are now used as add-on treatment in asthma. In this
review, we assess the latest literature on acetylcholine in asthma pathophysiology, including its role in
airway inflammation and remodelling. We also review new insights into the mechanism of action of
anticholinergics and their effects on airway remodelling. A comparison of the efficacy and safety of
long-acting anticholinergics in asthma treatment will also be covered, with a summary of the latest clinical
trial data.

The role of acetylcholine in asthma pathophysiology

Increased acetylcholine signalling in asthma

Research has shown that parasympathetic neuronal activity, through acetylcholine signalling, is increased
in the pathophysiology of asthma [2, 3]. Acetylcholine is released from airway neurons and non-neuronal
cells such as airway epithelial cells [4]. Other non-neuronal sources include inflammatory cells [2].
Acetylcholine binds to airway muscarinic receptors to trigger smooth muscle contraction and mucus
secretion (figure 1) [2, 3]. There are five identified muscarinic receptors that belong to the
G-protein-coupled receptor family [5]; however, only M;, M, and Mj receptors have been shown to play
major roles in airway physiology, and in diseases such as asthma and COPD [5]. M, receptors are
expressed by epithelial cells and in the ganglia; they regulate electrolyte and water secretion, and aid
parasympathetic neurotransmission, respectively [6]. M, receptors are expressed in airway smooth muscle
and on parasympathetic neurons; they have a very limited role in contraction on airway smooth muscle.
However, M, receptors act as autoreceptors on parasympathetic neurons to limit acetylcholine release, thus
limiting vagal reflex-induced bronchoconstriction and mucus secretion [2, 7]. Mj receptors are the
primary receptor subtype for bronchial smooth muscle contraction, and are found in airway smooth
muscle and submucosal glands [2, 5, 8].
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FIGURE 1 A summary of the role of acetylcholine in asthma pathophysiology. Acetylcholine is the predominant
parasympathetic neurotransmitter in the airways. It is released from airway neurons and non-neuronal cells,
such as airway epithelial cells, and binds to muscarinic M, M, and M; receptors. These receptors are found
on airway epithelial cells, smooth muscle cells and submucosal glands. Binding of acetylcholine to the
muscarinic receptors triggers a host of downstream effects associated with the pathophysiology of asthma.
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Several mechanisms account for increased neural activity in asthmatic airways [2]. Established mechanisms
include loss of epithelial barrier function due to an inflammatory local tissue microenvironment, which
exposes the neurons to the airway lumen [2]. Inflammatory mediators and even direct contact of airway
nerves with eosinophils can then activate the exposed neurons to trigger vagal reflex-mediated
bronchoconstriction [9]. This bronchoconstriction is compounded by the dysfunction of M, autoreceptors;
this results in increased acetylcholine release, leading to airway hyperreactivity [5]. M, receptor dysfunction
has been shown in animal model studies of airway disease following exposure to allergens, ozone and viral
infections [10]. In support of a role in asthma, the M, agonist pilocarpine protects from reflex
bronchoconstriction in normal subjects, but not in those with asthma [11]. M, receptor dysfunction is
thought to be driven by eosinophils and the secretion of major basic protein [10, 12]. In addition, tumour
necrosis factor-o. appears to play a key role in driving M, autoreceptor dysfunction in animal models of
ozone- and virus-induced airway hyperreactivity [13, 14]. The increase in acetylcholine signalling on M; and
M; receptors, and the M, receptor dysfunction, may all contribute to the increased bronchoconstriction,
mucus secretion, inflammation and airway remodelling, as discussed in the following sections.

An exciting, novel development in this area of research is neuronal plasticity and remodelling, which may
underpin persistent changes in cholinergic signalling in asthma. Airway neurons have received little
attention in studies into mechanisms of tissue remodelling in asthma, yet seem to switch to a cholinergic
isotype and branch more excessively in response to inflammatory insults, including allergens and
eosinophilic inflammation [15, 16]. Intriguingly, a recent study showed that such neuronal plasticity may
be a feature of early-life exposure to allergens, following which the neurotrophin NT-4 mediates neuronal
remodelling and persistent airway hyperresponsiveness beyond the immediate period of allergen exposure
[17]. In light of the observation that single nucleotide polymorphisms (SNPs) in genes that encode
neurotrophic factors, such as brain-derived neurotrophic factor, may be associated with asthma and allergic
rhinitis [18], pre-clinical studies that investigate the molecular control of this response and studies that
characterise the pathological features of neuronal remodelling in patients with asthma are clearly needed.

Downstream effects of increased acetylcholine signalling: mechanisms and therapeutic
implications

Bronchoconstriction

The increased vagal activity brought on by increased acetylcholine signalling contributes to
bronchoconstriction; in fact, the improvement in forced expiratory volume in 1s (FEV1) in response to
tiotropium is fairly similar to that induced by the B,-agonist salmeterol in mild-to-moderate asthma
patients [19]. This is intriguing, as the long-acting anticholinergic blocks a single mediator only, whereas
the B,-agonist is a functional antagonist of contraction, irrespective of the mediator that caused the effect.
Observations from pre-clinical studies in animals show that this may be explained by the use of the
cholinergic system by inflammatory mediators and bronchoconstrictors even if these do not directly act on
muscarinic receptors. For example, results from an in vivo study of allergen-induced bronchial
hyperreactivity in sensitised guinea pigs show that vagally derived acetylcholine contributes to
histamine-induced bronchoconstriction in allergen-challenged animals on a selective basis [20].
Thromboxane A,, a potent mediator of airway constriction, is dependent on parasympathetic signalling in
both healthy and inflamed airways [21]. Binding of thromboxane A, to its receptors is thought to
substantially increase the release of acetylcholine [21]. Increased vagal activity is also thought to contribute
to the early asthmatic reaction and late asthmatic reaction (LAR). Data from pre-clinical in vivo models
suggest allergens activate airway sensory nerves, at least in part via transient receptor potential ankyrin-1
channels [22]. This initiates a central reflex event leading to acetylcholine-induced bronchoconstriction,
which may be responsible for the LAR [22]. As such, the cholinergic reflex arc promotes
bronchoconstriction to histamine, inflammatory mediators and allergens.

In a guinea pig model of acute allergic asthma, tiotropium even reverses and protects against
allergen-induced airway hyperresponsiveness [23]. A clinical study comparing the effectiveness of
indacaterol/tiotropium and indacaterol (both in combination with inhaled corticosteroids (ICSs)) on
mannitol-induced airway responsiveness found no additional effect of tiotropium on top of indacaterol on
mannitol median effective dose (ED50) [24], whereas sulfur dioxide-induced airway hyperresponsiveness in
asthmatic subjects is subject to cholinergic control [11]. Thus, whereas it is clear that acetylcholine
contributes to bronchoconstriction in asthma, the contribution of the cholinergic reflex arc to (the
development of) airway hyperresponsiveness in asthma is not extensively reported and needs further
study.

Increased mucus secretion

Acetylcholine-induced mucus secretion is also a key feature of asthma. Mucus glands are innervated by
parasympathetic nerves and release mucus in response to electrical field stimulation [25]. Goblet cells do
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express muscarinic receptors, but require relatively high concentrations of muscarinic agonist to promote
secretory activity [26]. An interesting novel finding is that, independent of any effects on airway
inflammation, muscarinic receptors may also control goblet cell differentiation. Repeated methacholine
challenges promote the presence of mucus-positive cells in the airway epithelium of patients with mild
asthma [27]. In a study of human airway epithelial cells cultured on an air-liquid interface, tiotropium was
shown to attenuate goblet cell metaplasia induced by interleukin (IL)-13 [28]. In addition, tiotropium
reversed established goblet cell hyperplasia [28]; interestingly, no exogenous muscarinic receptor agonist
was added to the system, indicating non-neuronal acetylcholine produced by the epithelial cells themselves
contributes to goblet cell differentiation. Mechanistically, this was dependent on the regulation of the
FoxA2 and FoxA3 transcription factors that regulate mucus cell differentiation by IL-13, which was
prevented by tiotropium. Komiva et al. [29] found that the anticholinergic tiotropium had no effect on
goblet cell metaplasia or mucin secretion induced by IL-13, but decreased mucin secretion stimulated by
neutrophil elastase. IL-17-induced acetylcholine production promoted mucus secretion for the bronchial
epithelial cell line 16-HBE [30].

In vivo data have shown that when sensitised Mj receptor-deficient mice were exposed to allergen
challenge, they had a 30% lower increase in goblet cells compared with wild-type mice (p<0.05) [31]. They
also showed a significantly lower increase in the mucus-producing gene MUC5AC compared with
wild-type mice (35%; p<0.05) [31]. Treatment with tiotropium in sensitised guinea pigs also completely
prevented allergen-induced mucus gland hypertrophy [32], a finding that was also reported for house dust
mite-induced responses in mice [33]. Repeated exposure of mice to cholinergic agonists also promoted
goblet cell presence in the airway epithelium [34].

Thus, whereas it appears that goblet cell differentiation of airway epithelium is indeed subject to
cholinergic control, the underlying mechanisms are not yet fully established. Cholinergic receptors are
Gg-coupled receptors and therefore not presumed to directly couple to STAT (signal transducer and
activator of transcription) pathway activation, so the impact on IL-13, IL-17 and neutrophil elastase
signalling is unlikely to be through direct modulation of that activity [2]. An additional area that remains
unexplored is whether goblet cell hyperplasia in asthmatic patients is sensitive to anticholinergic
treatment.

Airway inflammation

In addition to bronchoconstriction and mucus secretion, acetylcholine also contributes to airway
inflammation, although at present this has only been reported in pre-clinical models and is yet to be
confirmed in asthmatic subjects. In vitro, acetylcholine signalling leads to the release of eosinophil
chemotactic activity from bovine bronchial epithelial cells (BECs) in a dose- and time-dependent manner
[35]. Of interest, eosinophils have been shown to gather around the nerves in airways of sensitised guinea
pigs and humans who have died of fatal asthma [36]. Other data suggest that acetylcholine signalling
polarises dendritic cells towards a T-helper cell type 2 (Th2) profile [37]. Incubation of dendritic cells with
acetylcholine stimulated production of two chemokines that recruit Th2 cells to allergic inflammation sites
(macrophage-derived chemokine, and thymus and activation-regulated chemokine) [37]. Mechanistically,
the effect is not fully clear at this stage, but regulation of the pro-inflammatory transcription factor NF-xB
and of protein kinase C (PKC) by muscarinic receptors may play a role [38].

In vivo, anticholinergics can reduce the acetylcholine-induced inflammatory response by inhibiting the
release of chemokines and recruitment of inflammatory cells [39]. Aclidinium, a long-acting
anticholinergic, has been shown to reduce both allergen-induced and methacholine-induced airway
hyperresponsiveness in both naive and sensitised mice [40]. There was also a substantial decrease (56+4%)
in allergen-induced eosinophilia with aclidinium treatment, suggesting an anti-inflammatory role [40].
Similarly, tiotropium has shown anti-inflammatory properties: in a rat model of resistive breathing,
tiotropium was shown to attenuate the increase in bronchoalveolar lavage neutrophil number, IL-1B and
IL-6 levels, and lung injury score [41]. Tiotropium was also shown to reduce inflammation in a
dose-dependent manner in sensitised mice [33]. Another study of sensitised mice showed a significant
reduction in airway inflammation with tiotropium [42]. Furthermore, tiotropium reduces eosinophilic
inflammation in chronically challenged guinea pigs to a similar extent as budesonide [32] and tiotropium
synergises with ciclesonide in reducing allergen-induced inflammation in the same model [43].

An intriguing, novel finding is that cholinergic nerves may release the recently identified neuromedin U,
which participates in Th2-type inflammation by directly activating eosinophils and potentially type 2
innate lymphoid cells [44-46]. In light of the aforementioned regulation of neuronal plasticity in asthma,
this is an exciting new development linking cholinergic regulation to airway inflammation that needs to be
followed up to establish its importance in asthma. Immunomodulatory effects of anticholinergics could
prevent asthma exacerbations by reducing inflammation and mucus production in the airways, and indeed
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tiotropium was reported to reduce exacerbations clinically [33]. Whether this is truly due to
anti-inflammatory activity by anticholinergics is a major open question that remains unanswered.

Airway remodelling

Airway remodelling involves structural changes to the airways, such as goblet cell metaplasia, airway
smooth muscle thickening and extracellular matrix deposition [28, 47]. Several pathways contribute to
remodelling, including growth factors, mediators and extracellular matrix proteins present in the airway
wall [48]. In addition, there is some evidence indicating cholinergic control of airway remodelling in
asthma patients. For example, tiotropium reduces airway wall dimensions in combination with long-acting
B,-agonist (LABA) and ICS therapy in patients with asthma, as assessed by quantitative computed
tomography [49]. Furthermore, repeated bronchoconstriction with either dust mite or methacholine
challenge in patients with asthma increased the percentage of epithelium staining for mucus-producing
cells and subepithelial markers for airway remodelling. The fact that this change was not seen in the
control group, and was reversible with albuterol treatment, suggests that bronchoconstriction can trigger
excess mucus production, leading to further airway obstruction [27]. Interestingly, eosinophilic
inflammation was only seen in patients who received the dust mite allergen. This supports the idea that
acetylcholine-induced bronchoconstriction alone can induce airway remodelling [27].

In vitro and animal model studies indicate that these changes are mediated mostly by Mj receptors, which
in turn are activated by acetylcholine. In vitro data have shown that downstream signalling from
muscarinic receptors triggers glycogen synthase kinase (GSK)-3 inhibition, which, in its active state, acts to
repress airway smooth muscle proliferation. This suggests a possible mechanism for the accumulation of
smooth muscle in airway remodelling [50]. Muscarinic receptors control contractile protein accumulation
in combination with transforming growth factor (TGF)-B as well via such a GSK-3-dependent mechanism
[51], whereas the cooperative regulation of extracellular matrix protein production by muscarinic receptors
and TGF-B appears to involve M, receptors [52]. An in vitro model of guinea pig lung slices found that
methacholine-induced bronchoconstriction leads to contractile protein expression, such as smooth muscle
myosin. This was mediated by the release of bioactive TGF-B [53], thought to be responsible for several
features of airway remodelling, such as myofibroblast transformation, enhanced collagen synthesis and
deposition in the sub-basement membrane, and increased expression of smooth muscle contractile protein
[47, 54]. The release of bioactive TGF-p in response to methacholine [55] supports these findings. Further
evidence suggests that it is the mechanical effects of acetylcholine-mediated bronchoconstriction that
causes airway remodelling [3, 56, 57]. BECs obtained from volunteers with asthma showed increased
secretion of TGF-f and granulocyte-macrophage colony-stimulating factor when subjected to compressive
forces when compared with BECs from volunteers without asthma [47].

In vivo data showed that wild-type mice had a 1.7-fold increase in staining for o-smooth muscle actin
following allergen challenge; this increase was completely absent in mice deficient in Mj; receptors [31].
This study did not find any stimulatory role for M; receptors in allergic inflammation, thus suggesting that
acetylcholine-induced remodelling can be independent of inflammation [31].

Use of tiotropium in sensitised mice resulted in reductions in goblet cell metaplasia, airway smooth muscle
thickness and levels of TGF-B, suggesting a role for tiotropium in reduction of airway remodelling and
hyperresponsiveness [42]. This is further supported by a study of tiotropium in sensitised guinea pigs,
which resulted in <75% inhibition in airway smooth muscle mass [32]. Combination therapy of
tiotropium with ciclesonide in a guinea pig model of chronic asthma also significantly reduced
allergen-induced airway smooth muscle mass by 81% (p<0.05) [43].

These data add insight into the role of bronchoconstriction in airway remodelling. However, a recent study
indicates that repeated exposure of mice to methacholine induces changes in goblet cell hyperplasia and
macrophage presence, but does not impact airway responsiveness [34]. Clearly, further studies are needed
to investigate in more detail the hypothesis that bronchoconstriction can drive airway remodelling
independently from inflammation. In particular, the underlying mechanisms need further clarification to
explain the relatively diverse functional and pathological outcomes in the aforementioned different
experimental models.

Anticholinergics in asthma

There is extensive experience of anticholinergic use in obstructive respiratory diseases, as they have been
approved for use in COPD for many years [58]. There are five anticholinergics currently licensed for use
in COPD: ipratropium [59], aclidinium [60], glycopyrronium (also known as glycopyrrolate) [61],
umeclidinium [62] and tiotropium [63]. However, only two anticholinergics have been approved for use in
asthma: ipratropium and tiotropium. Ipratropium is a short-acting anticholinergic approved for use in the
treatment of reversible airways obstruction in acute and chronic asthma in combination with B,-agonists
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[5, 59], whereas tiotropium is the only long-acting anticholinergic approved for use in asthma as add-on
therapy to ICS and a LABA [63].

Properties of anticholinergics

Anticholinergics are reversible competitive inhibitors of M;, M, and Mj receptors [6], and have been
shown to have similar binding affinity for all five muscarinic receptor subtypes [64]. The time spent at the
muscarinic receptors determines the duration of action of each drug. For example, the long-acting
anticholinergics show kinetic selectivity for M receptors over M, receptors (table 1), as they dissociate
more slowly from M; receptors than M, receptors [6, 65, 66]. In vitro data have shown that aclidinium
dissociates slightly faster from M, and M; receptors than tiotropium, but more slowly than ipratropium
and glycopyrronium (residence half-lives at M3 receptors are shown in table 1) [65]. In a separate set of
experiments conducted by SaLmoN et al. [67], binding studies conducted using Chinese hamster ovary cells
expressing human M;—Ms5 receptor subtypes showed that the pKi for umeclidinium was 9.8 (M;), 9.8
(M,), 10.2 (M3), 10.3 (M) and 9.9 (Ms). Dissociation of umeclidinium from the M; receptor was slower
than that for the M, receptor. The half-life of tiotropium in this study was longer than that of
umeclidinium for both the M, receptor (39.2 versus 9.4 min, tiotropium and umeclidinium, respectively)
and M; receptor (272.8 versus 82.2 min, tiotropium and umeclidinium, respectively) [67]. CAsarosA et al.
[65] also reported that tiotropium dissociates more slowly from the M; than the M, receptor; however, the
half-lives were 27 and 2.6 h, respectively. The differences in half-lives observed in these two studies may
have been due to methodological differences employed in the two studies.

Clinical data of anticholinergics in airway inflammation and remodelling

There are limited clinical data to explain the role of anticholinergics in airway inflammation and
remodelling in patients with asthma. A clinical study in patients with symptomatic asthma receiving ICS
and LABA assessed the effect of tiotropium on airway geometry and inflammation. Tiotropium
significantly decreased airway wall area and thickness, corrected for body surface area (p<0.05 for both),
and improved airflow obstruction. These data suggest a potential protective effect of tiotropium against
bronchoconstriction and airway remodelling [49]. Patients with severe asthma have shown improved
symptoms and lung function with tiotropium add-on to ICS, which suggests a role in reducing airway
inflammation [68]. The clinical data of anticholinergics in asthma are summarised later in this review.

Comparison of mechanism of action: anticholinergics, short-acting p,-agonists and
long-acting B,-agonists

Anticholinergics have a different mechanism of action compared with short-acting B,-agonists (SABAs)
and LABAs, which bind to airway B,-receptors to trigger smooth muscle relaxation [69, 70]. However, data
suggest concomitant use of anticholinergics with B,-agonists can enhance the B,-agonist-induced
bronchodilation via intracellular processes [71]. Glycopyrronium was shown to enhance muscarinic
contraction with SABAs by decreasing Ca®* sensitisaion and dynamics through PKC and
calcium-activated potassium (Kc,) channels [71]. This suggests that PKC and K¢, channels may be
involved in the cross-talk between anticholinergics and P,-agonists. Studies assessing aclidinium and
formoterol fumarate, and glycopyrronium and indacaterol fumarate, have shown enhanced benefits on
airway smooth muscle relaxation in human isolated bronchi [72, 73]. LABA and anticholinergic
combination therapy may also mitigate daily variations in sympathetic and parasympathetic activity. A
clinical study in patients with COPD showed that tiotropium was associated with sustained improvements
in lung function throughout 24 h, without affecting circadian variability [74]. These data show that dual

TABLE 1 Binding affinities (pKi) and dissociation half-lives (t1/2) of anticholinergics against
muscarinic M;, M, and M3 receptor subtypes

pK; ti/2h
M M. M3 M, M, M;
Ipratropium 9.40 9.53 9.58 0.1 0.03 0.22
Aclidinium 10.78 10.68 10.74 6.4 1.8 10.7
Glycopyrronium 10.09 9.67 10.04 2.0 0.37 6.1
Tiotropium 10.80 10.69 11.02 10.5 2.6 27

Dissociation constants determined by analysing competition kinetics curves in the presence of
[N-methyl-*H]scopolamine and different concentrations of unlabelled antagonist. Data from [65].
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bronchodilation with anticholinergic add-on therapy and B,-agonism has a greater benefit than single
bronchodilation. Furthermore, combination therapy of ipratropium on top of salbutamol prolongs the
duration of action of the bronchodilator effect [75]. These and other considerations, such as the frequent
use of ipratropium (4 puffs per day), have triggered studies into the role of long-acting anticholinergics in
COPD and, more recently, in asthma.

Use of short-acting anticholinergics in asthma

Ipratropium is a non-selective antagonist of muscarinic receptors [76], approved for use in acute and
chronic asthma in combination with B,-agonists [5, 59]. It can be used as an alternative reliever agent for
patients with asthma who are refractory to B,-agonists [77]. However, data suggest that it is not as effective
as SABAs; a study of 188 patients with chronic bronchitis (n=113) or asthma (n=75) found that asthma
patients were more likely to respond better to salbutamol than to ipratropium [78].

Use of long-acting anticholinergics in asthma

Aclidinium

Aclidinium is licensed for use in COPD only [60]. At the time of writing, there were no registered clinical
trials for aclidinium in asthma and so this anticholinergic will not be discussed further in this review.

Glycopyrronium

Glycopyrronium is also licensed for use in COPD only [61], but there have been studies assessing its use
in asthma. In patients with mild-to-moderate asthma, glycopyrronium provided significantly more
protection against methacholine-induced bronchoconstriction than placebo (p<0.002) [79].
Glycopyrronium also provided bronchodilation for up to 30h after each inhalation [79]. There are
currently two clinical trials assessing glycopyrronium use in patients with asthma: one study is assessing
the bronchodilator effects and safety of two doses of glycopyrronium (25 pg and 50 pg) in adults with
asthma receiving ICS/LABA (ClinicalTrials.gov identifier NCT03137784; completion date: December
2017); the other study is assessing triple therapy of glycopyrronium, indacaterol and mometasone furoate
in patients with uncontrolled asthma despite ICS/LABA treatment (ClinicalTrials.gov identifier
NCT03158311; estimated completion date: June 2019).

Umeclidinium

Umeclidinium is licensed for use in COPD, but is not approved for use in asthma [62, 80]. A phase II
study found a modest improvement in trough FEV1 with umeclidinium monotherapy in patients with
asthma not receiving ICS [81]. However, these improvements were not dose-related or consistent in
magnitude, meaning that these data do not conclusively show a therapeutic benefit with umeclidinium
monotherapy. Another phase II study evaluated the dose response, efficacy and safety of several doses of
umeclidinium in combination with fluticasone furoate in patients with symptomatic asthma despite ICS
therapy [82]. There was a significant improvement in trough FEV1 with the combination therapy (highest
doses of umeclidinium bromide) compared with fluticasone furoate alone (p=0.018) [82]. There are
currently two ongoing clinical trials assessing fixed-dose combination of umeclidinium, fluticasone furoate
and vilanterol in patients with asthma (ClinicalTrials.gov identifiers NCT03184987 and NCT02924688;
estimated completion dates: June 2019 and February 2019, respectively).

Tiotropium

Tiotropium is licensed for use in COPD as maintenance therapy, and in asthma as add-on therapy to ICS/
LABA in adults, adolescents and children aged >6 years [63, 83]. In February 2017, the US Food and
Drug Administration approved tiotropium Respimat for use in children with asthma aged >6 years [83].
There is an extensive clinical trial programme assessing the use of tiotropium in adults, adolescents and
children with asthma. Tiotropium 5 pg added on to at least ICS and LABA therapy in adult patients with
poorly controlled symptomatic asthma resulted in an improvement of up to 154 mL in peak FEV1
(p<0.001), with a 21% risk reduction for severe asthma exacerbation (p=0.03) [84]. A subgroup analysis
also reported a reduced risk of severe asthma exacerbations, asthma worsening and improved asthma
control responder rate regardless of baseline clinical features (sex, age, body mass index, disease duration,
age of onset and smoking status) [85]. A pooled safety analysis of seven randomised, double-blind,
placebo-controlled studies (both phase II and III) found that both 2.5 and 5 ug doses of tiotropium had
comparable safety and tolerability with placebo; the frequencies of patients reporting any type of adverse
effect were 57.1% versus 55.1% and 60.8% versus 62.5%, respectively [86]. Several studies in adolescents
and children have also shown significant improvements in lung function, with a comparable safety profile
to placebo [87-91]. Overall, these data show that tiotropium is efficacious and has a favourable safety
profile across a range of asthma severities in adults, adolescents and children [19, 84-89, 92, 93].
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Who can benefit from long-acting anticholinergics?

There are limited step-up treatment options for patients who continue to have frequent symptoms and
exacerbations while taking combination ICS/LABA treatment [94]. In addition, there are safety concerns
for regular use of B,-agonists in some patients, particularly those with the SNP in the B,-adrenergic
receptor gene ADRB2 genotype [76, 95]. Some patients may associate ICSs with systemic side-effects,
particularly in children, such as reduced bone density and growth [96]. Long-acting anticholinergics can
be a suitable add-on therapy for patients who remain symptomatic despite ICS and LABA therapy or who
are unable to receive conventional therapies. The benefits seen with tiotropium add-on therapy in the
subgroup analysis in patients with poorly controlled symptomatic asthma also suggest that a broad range
of patients can benefit from anticholinergics, irrespective of baseline characteristics [85].

Conclusions

Acetylcholine plays an important role in the pathophysiology of asthma via binding to airway muscarinic
receptors to trigger bronchoconstriction, mucus secretion and inflammation, while pre-clinical data have
highlighted the importance of cholinergic-mediated bronchoconstriction in airway remodelling.
Anticholinergics antagonise the parasympathetic effects of acetylcholine, thus providing therapeutic benefit
via a supplementary mechanism to ICS and LABA effects in asthma. Clinical data have shown that
long-acting anticholinergics are well tolerated, with infrequent and mild side-effects. The extensive clinical
trial data of tiotropium, particularly in asthma studies, demonstrate clinical efficacy and treatment benefit
as an add-on therapy in symptomatic asthma across a range of age groups and asthma severities.

Future studies are needed, however, to clarify the cholinergic control of asthma pathophysiology in more
detail. In particular, areas that require further investigation are neuronal plasticity in asthma and its
contribution to airway hyperresponsiveness and remodelling; the anti-inflammatory effects of
anticholinergics in asthma patients; and the mechanisms that underpin the cholinergic control of airway
inflammation and remodelling, in particular Th2-type inflammation and bronchoconstriction-induced
remodelling.
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