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ABSTRACT Asthma and chronic obstructive pulmonary disease (COPD) are complex and overlapping
diseases that include inflammatory phenotypes. Novel anti-eosinophilic/anti-neutrophilic strategies
demand rapid inflammatory phenotyping, which might be accessible from exhaled breath.

Our objective was to capture clinical/inflammatory phenotypes in patients with chronic airway disease
using an electronic nose (eNose) in a training and validation set.

This was a multicentre cross-sectional study in which exhaled breath from asthma and COPD patients
(n=435; training n=321 and validation n=114) was analysed using eNose technology. Data analysis
involved signal processing and statistics based on principal component analysis followed by unsupervised
cluster analysis and supervised linear regression.

Clustering based on eNose resulted in five significant combined asthma and COPD clusters that differed
regarding ethnicity (p=0.01), systemic eosinophilia (p=0.02) and neutrophilia (p=0.03), body mass index
(p=0.04), exhaled nitric oxide fraction (p<0.01), atopy (p<0.01) and exacerbation rate (p<0.01). Significant
regression models were found for the prediction of eosinophilic (R2=0.581) and neutrophilic (R2=0.409)
blood counts based on eNose. Similar clusters and regression results were obtained in the validation set.

Phenotyping a combined sample of asthma and COPD patients using eNose provides validated clusters
that are not determined by diagnosis, but rather by clinical/inflammatory characteristics. eNose identified
systemic neutrophilia and/or eosinophilia in a dose-dependent manner.
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Introduction
Asthma and chronic obstructive pulmonary disease (COPD) are now recognised to be complex and
heterogeneous chronic airway diseases that include several phenotypes with different inflammatory profiles
and responses to treatment. Despite global efforts that are successfully raising the standards of clinical care
for asthma [1] and COPD [2], the heterogeneity of these diseases continues to cause difficulties in
differentiating the disorders from each other, which leads to uncertainties in management and prognosis
of individual patients.

Framing patients based on the historical diagnostic labels of asthma and COPD may not suffice for
understanding an individual’s condition and for tailoring therapy. Therefore, it has been postulated to
gradually move away from categorising patients using such classical disease terminology and to initiate a
more personalised approach to management that identifies “treatable traits” [3]. This is underscored by
the emergence of highly specific therapies, pointing towards the selection of potential responders based on
clinical/inflammatory phenotyping [3, 4]. Management strategies that aim to minimise eosinophilic airway
inflammation in both asthma and COPD using inhaled steroids have shown to be effective in decreasing
exacerbations [5]. Furthermore, selection of patients based on eosinophilia or neutrophilia appears to
increase the efficacy of novel biologicals, such as anti-interleukin-5, or macrolide therapy [3, 5–10].

Inflammatory phenotyping in patients with chronic airway disease can be accomplished by blood or
sputum analysis [6]. These assessments do not provide results during patient consultations because they
require laboratory procedures. Hence efforts are ongoing to bring biological assessment to the point of
care. If properly validated, molecular profiling of exhaled air may provide a noninvasive and rapid
alternative for blood and sputum [11]. Volatile organic compounds (VOCs) in exhaled air, obtained by gas
chromatography mass spectrometry (GC-MS) have been associated with inflammatory profiles in asthma
[12] and COPD [13]. However, identification of individual molecular compounds using GC-MS is not
possible or suitable yet for phenotyping in the doctor’s office. In contrast, eNose technology can be
applied for pattern recognition of the complete mixture of VOCs in exhaled breath without the
identification of the individual components [14, 15]. The eNose uses multiple cross-reactive sensors, which
means that almost all the individual sensors respond to each analyte, but with different sensitivities. The
combined signal response from all the sensors produce a characteristic profile of the VOCs present in
exhaled air. This technology is fast and easy to use and has shown great potential to proceed to become a
point-of-care tool [16, 17].

We hypothesised that clinical/inflammatory profiles can be obtained from exhaled air in chronic airway
diseases, regardless of the diagnosis of asthma or COPD, and that this can be accomplished using eNose
technology. Data analysis comes in two main forms: unsupervised (also known as descriptive) and
supervised (also known as predictive). Both categories encompass functions capable of finding different
hidden pattern in datasets. Therefore, this study purposely used a comprehensive analysis plan. First,
unsupervised cluster analysis was performed in patients with chronic airway disease in order to identify
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FIGURE 1 Flowchart for patient inclusion in the training and validation set and the design of the
comprehensive analysis plan. Unsupervised cluster analysis was used to identify phenotypes of patients based
on eNose and supervised analysis was performed to determine the relation between exhaled volatile organic
compounds and different inflammatory markers. COPD: chronic obstructive pulmonary disease.
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phenotypes of patients based on breathomics. Second, supervised regression analysis was applied to
determine the relationship between exhaled VOCs and different inflammatory markers. Our final aim was
to test the hypothesis in a validation set of newly recruited asthma and COPD patients.

Methods
Study population
BreathCloud is an ongoing multicentre cross-sectional study (www.breathcloud.org). The data reported in
this article include results from the first 435 patients with asthma or COPD, of which 321 patients were
used for the training set (asthma n=206, COPD n=115) and 114 patients for the validation set (asthma
n=72, COPD n=42) (figure 1). Asthma patients were defined by the Global Initiative for Asthma criteria
[18] and COPD patients were characterised according to Global Initiative for Chronic Obstructive Lung
Disease criteria [2]. The ethics board of all participating sites concluded in writing that Dutch legislation
on human participation in research was not considered to be applicable, given the non-invasive nature of
this study which merely added exhaled breath analysis to standard diagnostic procedures. Other clinical
data (e.g. lung function and eosinophil and neutrophil blood counts) used in this study were collected for
routine clinical practice. Given the nature of the study the institutional ethics review board provided a
waiver for ethics approval (online supplementary material).

Measurements
Clinical assessment of asthma patients was made using the Asthma Control Questionnaire (ACQ) [19] and
for COPD patients the Clinical COPD Questionnaire (CCQ) [20] was used. The personal best
post-bronchodilation forced expiratory volume in 1 s (FEV1; % predicted) was used from data collected for
routine clinical practice <12 months prior to the study. Atopy was defined as IgE >0.35 kU·L−1 for at least
one of the specific IgEs. Exhaled nitric oxide fraction (FeNO) and eosinophil and neutrophil blood counts
were used from clinical data obtained <3 months prior to inclusion. Finally, the presence of exacerbations
in the past 3 months was explored. An exacerbation was defined as a worsening of respiratory symptoms
which required treatment with oral corticosteroids, antibiotics or both.

Exhaled breath analysis
Exhaled breath analysis was performed in duplicate using the SpiroNose, a validated integration between
routine spirometry and eNose technology connected in series with each other [17] (figure 2). Patients were
asked to rinse their mouth thoroughly with water three times. Subsequently, exhaled breath analysis was
performed in duplicate with a 2-min interval. All patients were instructed to perform five tidal breaths
followed by a single inspiratory capacity manoeuvre up to total lung capacity, a 5-s breath-hold and slow
(<0.4 L·s−1) maximal expiration towards residual volume (online supplementary figure 1E). Exhaled breath
was measured in real time by the SpiroNose sensors. The obtained sensor data were sent directly to and
stored at the online BreathCloud server. A more detailed description of the SpiroNose measurement setup
and verification of the sensor stability is provided in the online supplementary material.

a)

1

2

3
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arrays

Exhaled breath 

sensor arrays
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FIGURE 2 a) SpiroNose measurement setup: 1) mouthpiece, nose clamp and bacteria filter; 2) spirometer; 3)
SpiroNose. b) Front view of the SpiroNose and the positioning of the eight sensor arrays. The four central
sensor arrays monitor exhaled breath; the four reference sensor arrays monitor ambient volatile organic
compounds.
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Data processing
The offline analysis of raw sensor data downloaded from the BreathCloud server was performed using
Matlab (MathWorks, Natick, MA, USA). Details on the processing of the raw sensor signals and the
selection of parameters (sensor peak and peak/breath-hold ratios) are explained in online supplementary
figure 1E.

Sample size calculation
A sample size calculation was performed based on pilot data from our group. This pilot aimed to
determine whether the eosinophil and neutrophil blood counts, measured in a combined sample of asthma
and COPD patients, were related to the eNose data. Previous data showed a standard deviation of σx=0.42
and σx=0.36 for eosinophils and neutrophils, respectively. The eNose data (principal component (PC)1)
had a standard deviation of σy=0.71. We performed a sample size calculation assuming a slope of λ1=0.15
with α=0.05 and β=0.2; the predicted sample size was 180 for the training sample. A validation set half the
size of the training set was included, according to recommendations on design and analysis of
metabolomics studies [21].

Statistical analysis
A principal component analysis (PCA) was performed to merge the variables of interest into a
multivariate component. According to the Kaiser criterion, all PCs with an eigenvalue >1 were retained
[17, 22, 23]. The processed sensor variables; the original 14 sensor peaks and the 14 peak/breath-hold
ratios (28 variables in total) were restructured to four PCs that captured 91.2% of the variance within the
dataset (PC1 46.2%, PC2 21.3%, PC3 13.1% and PC4 10.6%). PCs were constructed for all subjects
(training and validation set), based on eNose data from subjects within the training set. Reducing the
dimensionality of the data prior to clustering algorithms reduces the risk of overfitting.

Unsupervised analysis
Unsupervised Hierarchical clustering was performed in the combined sample of asthma and COPD
patients, on standardised data using Euclidean distance and Ward linkage. We used similarity profile
analysis for determining the number of significant clusters [24]. To ensure repeatability and stability of the
model, the algorithm was repeated 10 times within random subpopulations (70%) of the training set.
Between-cluster comparisons were performed using ANOVA, Kruskal–Wallis or Chi-squared tests.
Statistical validity of the results were examined by the identification of eNose clusters within the
independent validation set. Finally, PCA plots were generated to present the obtained breath clusters
graphically.

Supervised analysis
A multiple linear regression, with stepwise selection of the independent variables was calculated to predict
eosinophil blood counts and neutrophilic proportions, measured in the combined sample of asthma and

TABLE 1 Baseline characteristics of the training set

Asthma COPD

Subjects 206 (64) 115 (36)
Age years 54.3±17.1* 65.2±13.4*
Female/male %/% 59.6/40.4 52.3/47.7
BMI kg·m−2 27.1±5.2 28.2±6.3
Post-bronchodilator FEV1 % predicted 83.2±17.6* 65.9±21.6*
Smoking (never/ex/current) 124/60/22 1/97/17
Smoking pack-years 8.8±8.2* 28.4±11.7*
GOLD (II/III/IV) NA 56/37/22
GINA (mild/moderate/severe) 63/108/35 NA
Eosinophil blood counts ×109 cells·L-1 0.39±0.41* 0.29±0.28*
Neutrophil blood counts ×109 cells·L-1 5.41±2.98* 7.15±3.02*
ICS 175 (85) 81 (70)
OCS 23 (11) 12 (10)

Data are presented as n (%), mean±SD or n, unless otherwise stated. COPD: chronic obstructive pulmonary
disease; BMI: body mass index; FEV1: forced expiratory volume in 1 s; GOLD: Global Initiative for Chronic
Obstructive Lung Disease; GINA: Global Initative for Asthma; ICS: inhaled corticosteroid; OCS: oral
corticosteroid; NA: not applicable. *: p<0.05.
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COPD patients, based on the eNose data (PC1–4). The dependent variables were eosinophil blood counts
and neutrophilic proportions measured in blood; the independent variables were the four PCs. A p-value
<0.05 was considered statistically significant. Finally, the regression model obtained from the training set
was examined in the independent validation set and compared based on the amount of variance that the
model accounted for (R2) and the obtained regression slopes.

Clinical and biological determinants on the eNose data
A multiple linear regression was calculated in the training set to predict eNose data from the key clinical
metadata. More information about the analysis and the results is presented in online supplementary tables
3E and 4E.

Results
321 patients were included in the training set. Baseline characteristics showed a significant difference in
age, lung function, smoking and systemic eosinophilia and neutrophilia between the asthma and COPD
patients (table 1). Asthma patients exhibited significantly higher eosinophil counts (0.39±0.41×109

cells·L-1) compared to the COPD group (0.29±0.28×109 cells·L-1), whereas neutrophil blood counts were
higher in COPD patients (7.15±3.02×109 cells·L-1) compared to the asthma patients (5.41±2.98×109

cells·L-1).

The validation set consisted of 114 patients. The baseline characteristics (online supplementary table 1E)
showed a significant difference in age, lung function, smoking, eosinophilic blood counts and inhaled
corticosteroid (ICS) use between the asthma and COPD groups.

Unsupervised analysis
Unsupervised Ward clustering in the training set (T clusters) resulted in five significantly different
eNose-driven clusters that differed regarding ethnicity (p=0.01), systemic eosinophilia (p=0.02) and
systemic neutrophilia (p=0.03), body mass index (BMI) (p=0.04), FeNO (p<0.01), atopy (p<0.01) and
exacerbation rate per person in the past 3 months (p<0.01) (table 2 and figure 3). The cluster structure
was reproducible when repeating the algorithm within randomly selected subsets of the population. Cluster
1T (n=74) contained both asthma (64.9%) and COPD (35.1%) patients who were predominantly females
(83.5%) with a high BMI (29.6±5.2 kg·m−2), high symptom scores (ACQ 2.87±5.5, CCQ 4.98±2.2), low
FeNO (23.1±7.8) and no inflammation measured in blood (eosinophil counts 0.23±1.1×109 cells·L-1,
neutrophil counts 4.98±2.2×109 cells·L-1). Cluster 2T (n=48) was a combined cluster of asthma (65.1%)
and COPD (34.9%) patients who were predominantly males (61.2%) with high circulating eosinophil
counts (0.69±1.2×109 cells·L-1), high FeNO (48.6±11.0) and low use of oral corticosteroids (OCS) (4.2%).
Cluster 3T (n=24) contained both asthma (60%) and COPD (40%) patients who were predominately
non-Caucasian (90%) with poor lung function (postbronchodilator FEV1 68.9% pred) and eosinophil
blood counts of 0.45±1.3×109 cells·L-1. Patients had the lowest exacerbation rate in the past 3 months (0.04
±0.19) and no OCS use; the use of ICS (55%) was lowest within this cluster. Cluster 4T (n=118) was a
combined cluster of asthma (61%) and COPD (39%) patients who were predominantly atopic (84.9%),
with high circulating neutrophil (8.44±3.1×109 cells·L-1) blood counts. Patients in this cluster experienced
the highest number of exacerbations per person in the past 3 months (0.43±0.3). Cluster 5T (n=57) had
fewer COPD (26.3%) patients, the best postbronchodilator FEV1 (83.9±22.8% pred), an exacerbation rate
per person in the past 3 months of 0.14±0.34 and symptom scores that were relatively low (ACQ 1.73±0.9
and CCQ 2.73±1.3).

Using the same algorithm to perform unsupervised cluster analysis in the independent validation set
(asthma n=72, COPD n=42) also resulted in five significantly different eNose-driven clusters (V clusters)
(figure 3 and online supplementary figure 3E). Figure 3 shows similar positions of the clusters between
training and validation sets (table 2 and online supplementary table E2). Again, all clusters were combined
asthma/COPD clusters that differed regarding ethnicity (p=0.02), FeNO (p<0.01), atopy (p=0.04), systemic
eosinophilia (p=0.05), ICS use (p=0.04) and the exacerbation rate per person in the past 3 months
(p<0.01) (online supplementary table 2E). Cluster 1V was a cluster with predominantly female patients,
high BMI, low eosinophil blood counts and poor control. Type 2 inflammation was predominant in cluster
2V, with high FeNO. Cluster 3V consisted again of predominantly non-Caucasian patients, with the lowest
registration of exacerbations in the past 3 months and no use of OCS. Cluster 4V resembled now
predominantly nonallergic patients who are still frequent exacerbators. Cluster 5V consisted of fewer
patients with COPD, who are younger with a normal lung function and low symptom scores. A more
detailed description of the clusters obtained and similarity (based on the significant different clinical and
inflammatory variables) with clusters found in the training set is presented in the online supplementary
material.
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Supervised analysis
First, a multiple linear regression was calculated in the training set to predict neutrophilic proportions
measured in blood based on eNose data (PC1–4). A significant regression equation was found (F(1,319)
=220.763, p<0.001), with R2=0.409 (figure 4a). Participants’ predicted neutrophilic proportion was equal
to 0.618+(0.093*PC2). Neutrophilic proportions increased 9.3% for each unit of PC2. Only PC2, which
explained 21.3% of the variance within the dataset, was a significant predictor of neutrophilic proportions
measured in blood.

TABLE 2 Training set: five eNose-driven clusters

Cluster 1T Cluster 2T Cluster 3T Cluster 4T Cluster 5T p-value#

Subjects n (%) 74 (23) 48 (15) 24 (7) 118 (37) 57 (18)
Asthma/COPD 64.9/35.1 65.1/34.9 60.0/40.0 61.0/39.0 73.7/26.3 0.57
Age years 53.9±19.9 54.5±14.8 57.8±16.7 53.6±17.8 50.5±18.1 0.42
Female/male 83.5/16.5 39.8/61.2 55.0/45.0 57.6/49.4 57.1/42.9 0.06
BMI kg·m-2 29.6±5.2 26.3±5.9 24.7±3.4 27.4±6.3 28.7±6.3 0.04
Caucasian/non-Caucasian 91.0/9.0 86.7/13.3 10.0/90.0 88.7/11.3 83.9/16.1 <0.01
Postbronchodilator FEV1 % predicted 79.8±29.1 78.1±26.4 68.9±26.5 78.5±25.2 83.9±22.8 0.31
FeNO ppb¶ 23.1±7.8

n=30
48.6±11.0

n=22
34.7±9.8
n=10

41.2±15.1
n=58

27.6±8.4
n=29

<0.01

Smoking (never/ex/current) n/n/n 31/35/8 19/25/4 8/13/3 41/58/19 26/26/5 0.57
Smoking pack-years 15.4±21.2 17.9±23.9 26.3±34.5 20.1±34.9 15.6±24.1 0.24
Atopic/non-atopic¶ 54.7/45.3

n=42
58.1/41.9
n=31

61.1/38.9
n=18

84.0/16.0
n=75

52.5/47.5
n=40

<0.01

Eosinophil blood counts ×109 cells·L-1 0.23±1.1 0.69±1.2 0.45±1.3 0.34±0.6 0.31±0.2 0.02
Neutrophil blood counts ×109 cells·L-1 4.98±2.2 5.44±2.9 6.35±3.2 8.44±3.1 5.49±2.8 0.03
ACQ 2.87±5.5 1.80±1.1 2.36±1.4 2.17±2.8 1.73±0.9 0.71
CCQ 4.98±2.2 2.36±0.5 3.89±4.6 2.73±1.5 2.73±1.3 0.98
Exacerbations requiring treatment in past 3 months n per patient 0.22±0.4 0.25±0.5 0.04±0.2 0.43±0.3 0.14±0.3 <0.01
ICS use 70.3 83.7 55.0 66.7 78.2 0.05
OCS use 14.9 4.2 0 13.6 10.5 0.18
Food/drink consumption in 2 h prior to exhaled breath
measurement

83.9 95.3 90.0 84.5 80.4 0.28

Data are presented as % or mean±SD, unless otherwise stated. Bold type represents statistical significance (p<0.05). COPD: chronic obstructive
pulmonary disease; BMI: body mass index; FEV1: forced expiratory volume in 1 s; FeNO: exhaled nitric oxide fraction; ACQ: Asthma Control
Questionnaire; CCQ: Clinical COPD Questionnaire; ICS: inhaled corticosteroids; OCS: oral corticosteroids. #: values obtained from analysis of
variance or Chi-squared analysis between five clusters; ¶: analysis in subsets of patients.
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FIGURE 3 Graphical representation (principal component (PC) analysis plot) of the obtained clusters in our a)
training and b) validation sets showing comparable positions of the clusters between the training and
validation sets. For example, based on the significantly different clinical and inflammatory variables, cluster
number 1T in the training set resembles cluster 1V of the validation set (table 2 and online supplementary
table 2E), which corresponds with the position of the clusters and colours of the clusters between a) and b).
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Second, a multiple linear regression was calculated in the training set to predict eosinophil blood counts
based on PC1–4. A significant regression equation was found (F(1,319)=442.337, p<0.001), with R2=0.581
(figure 4c). Participants’ predicted eosinophil blood counts is equal to 0.304+(0.235*PC1). Eosinophilic
blood counts increased 0.235×109 cells·L-1 for each unit of PC1. PC1 that explained 42.6% of the variance
within the dataset was significant in the prediction of eosinophilic blood counts.

Finally, the regression models to predict neutrophilic proportions and eosinophil blood counts obtained
from the training set were confirmed in the independent validation set (figure 4b and d). More details
about the results can be found in the online supplementary material.

Discussion
This study shows that phenotyping chronic airway diseases solely driven by breathomics provides
combined asthma/COPD clusters that differed regarding ethnicity, systemic eosinophilia and systemic
neutrophilia, FeNO, BMI, atopy and exacerbation rate. This was confirmed in an independent validation set
of patients. Interestingly, the eNose clusters found in a mixed sample of asthma and COPD patients
resemble previously published clinical clusters in asthma or COPD patients only. Furthermore, exhaled
VOCs appear to be related to systemic neutrophilic and eosinophilic blood counts among patients with
chronic airway disease with evidence of a dose-dependent relationship. When considering the clinical and
biological variables from the multiple regression analysis, the main independent drivers of the eNose
signal in asthma and COPD appear to be systemic eosinophilia and neutrophilia, BMI, atopy, ethnicity,
smoking pack-years and ICS use. These findings indicate that breathomics captures clinical/inflammatory
phenotypes, regardless of the diagnosis, among patients with chronic airway disease.
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eosinophil blood counts c) training set, d) validation set.
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This study captured clusters based on breathomics that were not predominantly driven by diagnosis but
were instead driven by clinical/inflammatory characteristics. Most of these driving factors are commonly
identified when attempting to phenotype asthma and/or COPD patients [25–30]. Cluster 1 found in our
study contains predominantly females with a high BMI, no inflammation and high symptom scores. This
cluster resembles one of the clusters found by HALDAR et al. [26]: “obese non-eosinophilic” asthmatics.
MOORE et al. [27] also found a cluster of mostly older obese women with non-atopic asthma. Cluster 2
consists predominantly of males with high circulating eosinophil counts and relatively low symptom
scores. This is a cluster that resembles the “inflammation predominant” phenotype found by HALDAR et al.
[26] and is comparable with one of the clusters found by NEWBY et al. [25]: “late onset, eosinophilic”. The
largest cluster obtained in our study, cluster 4, has much in common with the “early onset atopic”
phenotype found by both NEWBY et al. [25] and HALDAR et al. [26], as patients are mainly atopic with signs
of inflammation. Finally, cluster 5 is highly comparable to the “benign asthma” phenotype in which
patients are well controlled without inflammation and a normal lung function. Taken together, the clusters
we have obtained solely by breathomics are comparable with other clusters described in literature, which
raises confidence in the robustness of these clusters.

As previously mentioned, the clusters found in our study do not represent homogenous asthma or COPD
clusters, but represent combined clusters of asthma and COPD patients. RENNARD et al. [29] identified five
COPD subgroups that differed in clinical outcomes and inflammatory biomarkers, suggesting the clusters
represented clinically and biologically different subtypes of COPD. Our findings emphasise the concept
that there are different phenotypes of chronic airway disease including overlapping and complementary
disease entities. The latter extends the work by ROOTMENSEN et al. [31] and WEATHERALL et al. [32] who
identified overlapping clinical phenotypes of obstructive airway diseases among patients with asthma or
COPD by cluster analysis. Our data suggest that this also holds for inflammatory features, thereby
supporting a precision medicine approach based on treatable traits rather than diagnostic labels in
categorising the clinical and biological complexity of chronic airway diseases [3].

Cluster 3 obtained in this study consists mostly of non-Caucasian (90%) subjects. Apparently, ethnicity
was a major driving factor in this cluster analysis, which might be explained by a complex interplay of
factors including genetics, environment, culture, behaviour and socioeconomic position [33]. It has already
been shown by SCHATZ et al. [28] that ethnicity is a variable that distinguishes different asthmatic
phenotypes and that it is also linked to clinical outcomes. Notably, eosinophilic airway inflammation has
recently been associated with ethnicity [34]. It will therefore be crucial to study the mechanisms that link
ethnic inequalities to health, disease and phenotyping in order to individualise the management of chronic
airway diseases [28].

Our study extends the results of several research groups who observed associations between eosinophilic or
neutrophilic inflammatory profiles and exhaled VOCs in asthma or COPD using GC-MS [12, 13, 35].
Interestingly, in an in vitro study SCHLEICH et al. [35] identified seven VOCs that were able to discriminate
between eosinophilic and neutrophilic cultures. The present study extends this to a real-life clinical setting.
To our knowledge our study is the first that applied an eNose, suitable for use in a doctor’s office, to
phenotype a combined sample of asthma and COPD patients based on clinical as well as inflammatory
characteristics.

In addition, PLAZA et al. [36] aimed to investigate the capacity of eNose technology to discriminate
between inflammatory phenotypes determined by induced sputum in patients with persistent asthma. In
our study inflammation was determined and validated in peripheral blood, which is more and more
common in daily practice, regardless of an a priori diagnosis of asthma or COPD. However, the
association between airway (sputum) inflammatory cell counts and those in peripheral blood are at best
moderate. Our group recently published a systematic review on this regarding eosinophil counts, showing
a receiver operating characteristic area under the curve of 0.78 by blood eosinophils for sputum
eosinophils [37]. The accuracy of blood neutrophils for sputum neutrophils is equally modest [38].
Nevertheless, novel anti-eosinophilic [8, 39] or anti-neutrophilic [40] strategies are increasingly based on
measurements performed in blood, due to the difficulties of obtaining adequate sputum cell counts.
Therefore, we compromised, as reaching similar, high sample sizes of patients with sputum cell counts in a
large training and validation set is unrealistic.

The strength of our study seems to be the use of an independent validation set that confirmed the results
from the training set. However, the match between the results obtained from the training and validation
sets was not complete. Peripheral blood neutrophil counts were significantly different between clusters in
the training set, but not in the validation set. This could be explained by differences in baseline
characteristics between the training and validation sets, in which the neutrophil blood counts were higher
in the training set. In addition, BMI as driving factor between clusters was not confirmed by the validation
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set. Furthermore, atopy and FeNO were merely obtained in a subgroup of patients, predominantly
asthmatics, hampering the generalisability of these results in patients with chronic airway disease.

This study purposely used a comprehensive analysis plan. A potential limitation to this strategy is that it
was based on a cross-sectional design with collection of a single blood sample as part of routine clinical
characterisation within a 3-month window prior to the eNose measurement. Some recent studies have
shown a degree of variability in blood inflammatory cell counts when collected at different time points
[41–44]. It might be possible that this temporal variability could confound interpretation of inflammatory
cell pattern heterogeneity. However, KATZ et al. [45] showed that a single blood eosinophil measurement in
severe eosinophilic asthma patients predicted the average of subsequent measurements in 85% of cases.
Using an average of multiple measurements only marginally increased the sensitivity.

What could be the clinical relevance of our findings? An ideal biomarker is minimally invasive, easy to
collect, reliable, inexpensive and can be used to identify either a clinical phenotype or a treatment response
phenotype, to measure changes in disease activity or to confirm a diagnosis [45]. This study used the
SpiroNose to perform exhaled breath analysis as part of routine assessment at the point of care. This
real-time approach of breath sampling has the advantage of increasing VOC concentrations and stability of
the total exhaled breath sample compared to indirect VOC sampling using collecting bags [17, 46]. Direct
breath sampling is a very appealing option, as it is not only practical for clinical usage, but it also avoids
errors during collection and storage [17]. Given this clinically applicable technology, the present data may
qualify breath assessment as a real-time tool in the doctor’s office for broadly phenotyping patients with
chronic airway disease. This meets the demands of modern medicine, in which management decisions are
taken based on the patient’s individual phenotype rather than a classical diagnosis [3, 47]. Novel
anti-eosinophilic [8, 39, 48] or anti-neutrophilic [40] strategies demand rapid inflammatory phenotyping,
which appears to be accessible using exhaled air.

In conclusion, phenotyping of a combined sample of asthma and COPD patients driven by eNose provides
combined clusters of chronic airway disease that are not determined by diagnosis, but rather by clinical/
inflammatory characteristics. These clusters resemble published clusters based on clinical characteristics
and are related to systemic neutrophilic and eosinophilic inflammation. Our findings support the concept
of a label-free approach based on treatable traits to understand the condition of individual patients. The
present data suggest that molecular profiling of exhaled air allows meaningful phenotyping of chronic
airway disease, regardless of the diagnosis asthma or COPD, and may therefore facilitate personalised
anti-inflammatory strategies.
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