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ABSTRACT Host response biomarkers can accurately distinguish between influenza and bacterial
infection. However, published biomarkers require the measurement of many genes, thereby making it
difficult to implement them in clinical practice. This study aims to identify a single-gene biomarker with a
high diagnostic accuracy equivalent to multi-gene biomarkers.

In this study, we combined an integrated genomic analysis of 1071 individuals with in vitro experiments
using well-established infection models.

We identified a single-gene biomarker, IFI27, which had a high prediction accuracy (91%) equivalent to
that obtained by multi-gene biomarkers. In vitro studies showed that IFI27 was upregulated by TLR7 in
plasmacytoid dendritic cells, antigen-presenting cells that responded to influenza virus rather than bacteria.
In vivo studies confirmed that IFI27 was expressed in influenza patients but not in bacterial infection, as
demonstrated in multiple patient cohorts (n=521). In a large prospective study (n=439) of patients
presented with undifferentiated respiratory illness (aetiologies included viral, bacterial and non-infectious
conditions), IFI27 displayed 88% diagnostic accuracy (AUC) and 90% specificity in discriminating
between influenza and bacterial infections.

IFI27 represents a significant step forward in overcoming a translational barrier in applying genomic assay
in clinical setting; its implementation may improve the diagnosis and management of respiratory infection.
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Introduction
Acute respiratory tract infections are the most common causes of infectious disease morbidity and
mortality in the world (WHO - 2014). Viruses and bacteria are the main causes of respiratory infections.
Among the viruses, the influenza virus causes the highest levels of morbidity and mortality. Accurately
differentiating between the influenza virus and bacteria is the first key step in managing respiratory
infections, because initial treatment (antiviral versus antibiotic) is guided mainly by the aetiology.
However, differentiating between influenza and bacterial infections on clinical grounds is often difficult,
because both infections share similar clinical features (e.g. cough, dyspnoea and fever).

Pathogen testing (e.g. virus detection by PCR) is an important step towards clarifying the diagnosis.
Although important, virus detection alone is insufficient to guide patient management. Like most
respiratory tract viruses, the influenza virus produces a wide clinical spectrum. In some patients, the virus
acts as a bystander and its presence is unrelated to the presenting illness [1]. In others, the virus is directly
responsible for the patient’s symptoms. Clinical decision-making requires consideration of whether the
virus is a bystander or the cause of presenting symptoms, because anti-viral therapy (e.g. Oseltamivir)
should be administered only to individuals in whom symptoms are severe and directly caused by the virus
[2–4]. Currently, no laboratory test exists that can distinguish between virus detection and “active
infection”.

Host response biomarkers represent an alternative approach to circumvent this problem. Host gene
expression biomarkers could accurately identify the immune response underpinning influenza infection,
and thus assist clinicians in distinguishing between influenza and bacterial infections [5–8]. These
biomarkers represent a promising strategy to complement current diagnostic methods. However, published
biomarker panels contain a large number of genes, making it difficult to implement them in clinical
practice. To overcome this translational barrier, we conducted an integrated genomic analysis of 1071
individuals, to search for a single-gene biomarker with high diagnostic accuracy equivalent to that of
multi-gene biomarkers in distinguishing between influenza and bacterial infections.

Materials and methods
Study design
This study consisted of a discovery phase and a validation phase (figure 1). First, a candidate biomarker
was identified in discovery cohorts (n=111). Next, the identified biomarker underwent a two-phase
validation. In phase 1 validation, we evaluated the biomarker in four independent, external data sets
(n=521) (figure 1). In addition, we performed in vitro experiments to understand the mechanism by
which immune cells produced the biomarker, and we performed experiments with mice to validate the
biomarker in vivo (see supplementary material for full details of all experiments). In phase 2 validation, we
undertook a large prospective study (n=439) to evaluate real-world performance of the biomarker in
patients with suspected respiratory infection.

Participants
Participants were recruited in discovery cohorts and a prospective validation cohort. The discovery cohorts
consisted of three case-control studies. Each study included patients with well-defined phenotypes
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(influenza infection, bacterial infection and non-infectious illnesses) and healthy controls. In phase 2
validation, we performed a large, multi-centre study (“prospective validation study”) in patients presenting
with “flu-like” illness to emergency departments. The study protocol was approved by the institutional
review board of each participating institution and all study participants gave informed consent.
Demographic and clinical characteristics of all study participants are summarised in table 1. Detailed
information on all cohorts (inclusion criteria, recruitment process, sample collection and follow-up) is
presented in the supplementary material.

Statistical analysis
To evaluate the diagnostic performance of the biomarker, sensitivity, specificity, diagnostic threshold
and area under the curve (AUC) of the receiver operating characteristic curve were calculated using
established methods (see supplementary material for full details). Comparisons between two groups were
calculated using the unpaired two-tailed t-test or the non-parametric Mann–Whitney U-test where
appropriate. Comparisons between multiple groups were calculated using a one-way ANOVA or the
Kruskal–Wallis test, where appropriate. Statistical analysis was performed using the NCSS (LLC,
Kaysville, UT, USA) and PRISM (GraphPad Software, La Jolla, CA, USA) software packages.

Results
Discovery cohorts
To screen for influenza biomarkers, we analysed the whole blood of influenza patients in three discovery
cohorts (table 1 and supplementary table S1). Influenza patients were defined as those with a positive
virus result detected on viral nucleic acid testing, who presented with severe illness compatible with
influenza that required admission to a hospital or intensive care unit. We first performed microarray
analysis to identify differentially expressed genes (between influenza patients and healthy controls) (figure
1). This analysis revealed that among differentially expressed genes, interferon alpha inducible protein 27
(IFI27) performed significantly better than all other genes (figure 2). This finding was consistent in two
separate discovery cohorts (figure 2) and on different microarray platforms (supplementary figure S1).
We subsequently performed PCR validation in all three cohorts, which confirmed that IFI27 was
upregulated in influenza-positive patients (supplementary table S1). Altogether, findings from all
discovery cohorts were consistent with each other and collectively suggested that IFI27 is a potential
biomarker of influenza infection.

FIGURE 1 Schematic of the study.
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Host response
To confirm that IFI27 reflected “active infection” in patients, we examined IFI27’s correlation with
immune response genes. This analysis showed that IFI27 was co-expressed with many anti-viral immune
response genes. It also showed that IFI27 was highly correlated (coefficient of correlation >0.6) with 69%
of the differentially expressed genes (24 of 35) in the immune system pathway, and 90% of the
differentially expressed genes (19 of 21) in the interferon signalling pathway (figure 3). Many of these
IFI27-correlated genes have anti-viral functions, such as MX1 (anti-influenza), ISG15 (inhibits influenza
virus replication), OAS1, OAS2 and OAS3 (degrades viral RNA), EIF2AK2 (inhibits viral replication),
HERC5 (positive regulator of the anti-viral response) and IFIT2 (inhibits expression of viral mRNA).
These findings confirm that IFI27 was part of the host response against respiratory viruses.

External validation
In phase 1 validation, we validated our findings in both mouse and human datasets. Mouse data suggested
that ifi27 was upregulated in influenza infections of varying severity (supplementary figure S2). In human
datasets, we analysed microarray datasets of four independent external cohorts (GSE6269, GSE42026,
GSE68310 and GSE60244) (table 1). Two cohorts consisted of paediatric patients: GSE6269 (n=131) and

TABLE 1 Overview of all cohorts

Mean age
years

Males/
females n

Clinical
setting

Infection
severity

Sample
size n#

Case mix in each cohort n (%)

Viral Bacterial Non-infectious Healthy controls

Discovery cohorts
Australia 51 28/26 Adult ICU Severe 54 8 (22)¶ 16 (44)¶ 12 (33)¶ 18
Canada 48 9/24 Adult ICU Severe 33 33 (100) 0 0 0
Germany 61 14/10 Adult ICU and

ward
Moderate/
severe

24 24 (100) 0 0 0

External cohorts
GSE6269 [9] 3 81/57 Paediatric ward Moderate 138 36 (26) 95 (69) 0 7 (5)
GSE42026 [10] 2.8 59/33 Paediatric ICU/

ward
Moderate/
severe

92 41 (44) 18 (20) 0 33 (36)

GSE60244 [11] 61 89/69 Adult ward Moderate 158+ 71 (45) 22 (14) 0 40 (25)
GSE68310 [12] NA NA Healthy adults Mild 133 109 (82) NA 24 (18) 0

Prospective
validation
cohort

53 180/220 Adult
outpatient, ER

and ICU

Mild,
moderate,
severe

439+ 162 (40)¶ 48 (12)¶ 177 (44)¶ 37

ICU: intensive care unit; GSE: reference number for publicly available microarray datasets in the National Centre for Biotechnology Information
Gene Expression Omnibus (reference for published paper is provided beside each GSE number); NA: not available; ER: emergency room.
#: total sample 1071; ¶: percentage calculated based on number of patients, healthy controls excluded; +: includes additional co-infection cases
(not shown in table).
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FIGURE 2 IFI27 performs better than other genes as a biomarker for influenza infection. Microarray data are
presented as volcano plots, which arrange genes along dimensions of biological significance (horizontal axis)
and statistical significance (vertical axis). The horizontal axis denotes gene expression levels (fold changes)
on a log2 scale between two groups (influenza versus healthy controls). The vertical axis denotes the adjusted
p-value on a negative log2 scale between the groups. The genes with higher expression levels (>2 fold
changes) and adjusted p-values (<0.05) are highlighted in yellow.
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GSE42026 (n=92) [9, 10]. Two other cohorts consisted of adult patients: GSE60244 (n=158) and
GSE68310 (n=133) [11, 12]. We found that IFI27 was among the signature genes for influenza infection in
all four cohorts. In three cohorts (GSE42026, GSE60244 and GSE68310), IFI27 was the most highly
upregulated gene in infected patients (figure 4). In one cohort (GSE6269), IFI27 was the second most
highly upregulated gene in infected patients. These findings are consistent with those of the discovery
cohorts, confirming that IFI27 is an important signature gene for influenza infection.

In vitro model
To confirm further whether IFI27 gene expression was directly activated by the influenza virus, we
co-cultured peripheral blood samples obtained from healthy volunteers with the live influenza virus. These
experiments revealed a dose-response relationship of IFI27 gene expression in response to viral load
(figure 5a), confirming that IFI27 was activated by the influenza virus. Additional experiments using
different influenza A virus strains (H3N2 and H1N1) and the influenza B virus strain showed similar
findings (data not shown).

IFI27 is produced by plasmacytoid dendritic cells that recognise the influenza virus
To identify the immune cells that expressed IFI27 in peripheral blood, we studied IFI27 gene expression
in eight immune cell subsets, including neutrophils, B cells, CD4, CD8, monocytes, natural killer (NK)
cells, myeloid dendritic cells and plasmacytoid dendritic cells (pDCs). We found that in response to

Immune system genes

0 10 20 30

0.000125

0.000100

p-value

0.000075

0.000050

0.000025

SIRT1 negatively regulates rRNA expressiona)

b)

Senescence-associated secretory phenotype
PRC2 methylates histones and DNA

Mitotic prophase
Mitotic M-M/G1 phases
Meiotic recombination

M phase
Interferon signalling

Interferon gamma signalling
Interferon alpha/beta signalling

Immune system
HATs acetylate histones

Formation of the beta-catenin:TCF transactivating complex
C

o
rr

e
la

ti
o

n
 c

o
e

ffi
c
ie

n
ts

1.5

–1.0

–0.5

0.0

0.5

1.0

Cytokine signalling in immune system
Condensation of prophase chromosomes

Chromatin organisation
Chromatin modifying enzymes

Cell cycle, Mitotic
Cell cycle
Amyloids

IF
I2

7

Z
B

P
1

O
A

S
L

IF
I6

O
A

S
1

IS
G

1
5

X
A

F
1

E
IF

2
A

K
2

IF
IT

1

O
A

S
3

IF
IT

3

IF
IT

2

O
A

S
2

O
A

S
3

C
1

Q
B

U
S

P
1

8

M
T

2
A

IF
IH

1

H
E

R
C

5

G
B

P
3

M
X

1

IR
F

7

IF
I3

5

A
IM

2

C
A

R
D

1
7

C
1

Q
A

U
B

E
2

C

K
IF

2
C

T
X

N

F
C

G
R

1
B

S
1

0
0

A
1

2

G
B

P
3

H
L

A
-D

O
A

H
L

A
-D

Q
A

2

C
D

1
9

C
D

4
0

L
G

B
L

K

F
C

E
R

1
A

FIGURE 3 a) The immune system pathway was the most over-represented pathway. Pathway enrichment
analysis was performed using differentially expressed genes in influenza-positive patients. Pathway terms are
indicated on the y-axis and the number of differentially expressed genes in the respective pathway category is
indicated on the x-axis. The p-value for the probability that the observed distribution of expression occurred
by chance is represented by the various colours of the bars. b) IFI27 correlated with the immune system
pathway. Correlation analysis was performed between IFI27 and individual genes in the immune system
pathway. Representative genes are presented here along with their correlation coefficients indicated on the
y-axis. Only statistically significant genes (p<0.05 using Pearson correlation analysis) are shown. IFI27 is
provided here as a reference gene (correlation coefficient=1).

https://doi.org/10.1183/13993003.02098-2016 5

RESPIRATORY INFECTIONS | B.M. TANG ET AL.



stimulation by the influenza antigen, pDCs displayed the highest level of IFI27 gene expression relative
to other cell subsets (figure 5b). Notably, neutrophils did not upregulate IFI27, despite their known
effects on the interferon pathway (figure 5b and d). We also found that the IFI27 response in peripheral
blood was predominantly driven by TLR7 activation (figure 5c), and this TLR7-driven IFI27 response
was mainly observed in pDCs and NK cells (figure 5d). We noted that the IFI27 response was
particularly strong in pDCs (its expression levels were significantly higher in pDCs than in NK cells)
(figure 5e). Based on these findings, we concluded that pDCs (and to a much lesser extent, NK cells)
were most likely the predominant sources of IFI27 in peripheral blood. Because the pDC-TLR7 pathway
specifically recognises respiratory viruses (e.g. the influenza virus) but does not recognise bacteria, these
findings suggest that IFI27 could be a useful biomarker to discriminate between influenza and bacterial
infection.

IFI27 discriminates between bacterial and influenza infection
Consistent with the aforementioned findings, we found that IFI27 expression in peripheral blood could
discriminate influenza pneumonitis from bacterial pneumonia in the discovery cohorts (figure 6a). This
was further confirmed by our in vitro experiments (figure 6b). In these experiments, influenza viruses
(H1N1 and H3N2) and bacterial antigen (lipopolysaccharide) were co-cultured with peripheral blood or
purified pDCs. In response to lipopolysaccharide stimulation, IFI27 upregulation was negligible (in both
peripheral blood and pDCs). In contrast, IFI27 upregulation in response to influenza viruses (both
H1N1and H3N2) was very high (up to 777 fold change in peripheral blood and 1475 fold change in
pDCs) (figure 6b).

Prospective validation cohort
In phase 2 validation, we prospectively recruited 402 patients with suspected respiratory tract infections and
37 healthy volunteers across five teaching hospitals in Australia from 2012 to 2016 (table 1, supplementary
table S2–S3). In this prospective cohort, the diagnostic threshold of IFI27 was tested on a real-time PCR
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platform. We divided the cohort into a training set (n=200) and a test set (n=202). The diagnostic threshold
was first optimised in the training set and was subsequently confirmed in the test set. The calculated AUC of
the receiver operating characteristic curve, specificity and sensitivity were nearly identical in both train and
test sets. Henceforth, we present the summary findings with both datasets combined.

We found that a threshold of 74 fold change (based on PCR) provided the most optimal level of IFI27 to
differentiate between influenza and bacterial infections (for full details on how this threshold was
determined, see supplementary material). At this cut-off value, IFI27 had a sensitivity of 0.80 and
specificity of 0.90. Furthermore, IFI27 had an AUC of 91% (figure 7), which was within the same range of
the multi-gene biomarkers (87%–95%) (table 3). In addition, IFI27 had an AUC of 83% (sensitivity 0.80
and specificity 0.75) in differentiating influenza virus from other respiratory viruses. This performance is
modest compared to its ability to distinguish influenza from bacterial infections. However, we noted that
none of the previously published multi-gene biomarkers could distinguish influenza from other respiratory
viruses (table 3).

To evaluate further the clinical utility of IFI27, we sought to determine whether it could identify influenza
infections among all patients in the cohort (figure 7). This additional evaluation represents a more
vigorous evaluation of its performance, because IFI27 would need to identify influenza infection against
multiple alternative aetiologies (bacterial infections, other viral infections and all non-infectious
conditions), rather than just two aetiologies (influenza versus bacteria). Only one previous multi-gene
biomarker study evaluated biomarkers in this manner (GSE63990, see table 3) [13]. In our evaluation,
IFI27 showed a high AUC (88%) in identifying influenza infection against multiple aetiologies (sensitivity
0.80 and specificity 0.80) (figure 7). This performance was similar to a previous multi-gene biomarker
study (87%) (GSE63990) [13]. Collectively, these findings show that IFI27 has high diagnostic accuracy,
equivalent to those obtained by previously published multi-gene biomarkers.

Discussion
This study addressed a major challenge in translating genomic science into clinical practice. Over the last
decade, considerable advances have been made in discovering the gene expression signatures of respiratory
viral infection. These gene expression signatures identify the immune response associated with the
infection, thereby significantly improving the clinician’s ability to make an accurate diagnosis. However, all
published gene expression signatures consist of multi-gene lists, ranging from dozens of genes in some
studies to hundreds of genes in others. Measuring expression levels of a large number of genes in clinical
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FIGURE 6 a) IFI27 levels distinguish bacterial from influenza infection in patients. IFI27 gene expression in
peripheral blood samples of patients with influenza virus pneumonitis (n=8), bacterial pneumonia (n=16),
systemic inflammatory response syndrome (SIRS) (n=12) and healthy controls (n=18). Patients with SIRS had
non-infectious phenotypes including surgery, trauma, pancreatitis, cardiac and pulmonary conditions. IFI27
levels were measured by quantitative real-time PCR. b) In vitro IFI27 response to bacterial antigen and
influenza viruses. Peripheral blood mononuclear cells (PBMC) and plasmacytoid dendritic cells (pDC) were
co-cultured with lipopolysaccharide (LPS) or live influenza viruses (H3N2 and H1N1). Multiplicity of infection
(MOI) is the ratio of virus to total number of cells. *: statistically significant difference (p<0.05) between the
two groups using the non-parametric Mann–Whitney U-test.
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practice is problematic. Current real-time PCR technology measures only a small number of genes.
Furthermore, determining a diagnostic threshold for many genes is computationally challenging. Most
studies have used very complex machine learning algorithms to determine such a threshold. This is
impractical in clinical practice, because most institutions do not have access to specialist bioinformatics
expertise. In this paper, we demonstrated that a carefully chosen single-gene biomarker might offer an
alternative approach. Using evidence from in vitro experiments, a mouse model and multiple patient
cohorts, we demonstrated that as a single-gene biomarker, IFI27 could consistently identify influenza
infection in different patient populations, in individuals with varying extents of disease severity and in
patients with multiple comorbidities. Furthermore, our findings suggest that this biomarker could achieve
high prediction accuracy in distinguishing between influenza and bacterial infections, equivalent to those
obtained by multi-gene biomarkers.
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FIGURE 7 Diagnostic performance of IFI27 on a real-time PCR platform. a) Influenza infection (n=96) versus
bacterial infection (n=48). Area under curve (AUC) is 0.91 (95% CI 0.83–0.95, p<0.001). b) Influenza infection
(n=96) versus all conditions (bacterial infection, viral infection and non-infectious “flu-like” illness) (n=293).
AUC is 0.87 (95% CI 0.82–0.90, p<0.001). AUC is calculated using the full range of IFI27 cut-off values (fold
change 10–6000).

TABLE 2 Detection methods and viruses detected amongst the cohorts

Virus detection methods Assay for
other

viruses#

Viruses detected

Viral
serology

Nucleic
acid PCR

Immuno-
fluorescence

Viral
culture

Influenza A Influenza
B

Other
viruses#

Co-
infection¶

Discovery cohorts
Australia No Yes Yes No Yes Yes (H1N1)+ ND ND ND
Canada No Yes Yes Yes Yes Yes (H1N1)+ ND ND ND
Germany No Yes No No Yes Yes (H1N1,

H3N2)
Yes ND ND

External cohorts
GSE6269 [9] No No Yes Yes Unknown Yes (subtype

unknown)
Yes ND ND

GSE42026 [10] No Yes No No Yes Yes (H1N1) ND RSV Yes
GSE60244 [11] Yes Yes Yes Yes Yes Yes (subtype

unknown)
Yes RSV, HMPV Yes

GSE68310 [12] Yes Yes No No Yes Yes (H1N1,
H3N2)

Yes RSV, RV,
coronavirus

Yes

Prospective
validation
cohort

No Yes No No Yes Yes (H1N1,
H3N2)

Yes RSV, PI, RV,
HMPV,

adenovirus

Yes

ND: not detected; GSE: reference number for publicly available microarray datasets in the National Centre for Biotechnology Information Gene
Expression Omnibus (reference for published paper is provided beside each GSE number); RSV: respiratory syncytial virus; HMPV: human
metapneumovirus; RV: rhinovirus; PI: parainfluenza virus. #: non-influenza respiratory viruses including RSV, HMPV, RV, PI, adenovirus and
bocavirus; ¶: includes virus–virus and virus–bacteria co-infections; +: Australian and Canadian cohorts consisted of exclusively pandemic H1N1/
09 influenza virus strains, other cohorts contained seasonal H1N1 and H3N2 influenza virus strains.
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Our study is by far the largest biomarker study undertaken in influenza virus infection. It consisted of
eight cohorts (n=1071), with patients drawn from heterogeneous populations in different geographical
locations, settings (outpatients, emergency departments and intensive care units) and different levels of
infection severity (mild, moderate to severe). Such a broad clinical case-mix makes it likely that our
findings are generalisable to other patient populations. Our findings are also consistent with a recently
published meta-analysis of respiratory viral infection. That meta-analysis included five influenza cohorts
(n=292) (two cohorts originated from the present study) [14]. It identified 127 multi-gene signatures
associated with the influenza infection. Of these 127 genes, IFI27 was the most highly upregulated gene.

Our in vitro data are important, because it provides a biologically plausible explanation for the ability of
IFI27 to differentiate influenza from bacterial infections. Our findings revealed that IFI27 was produced by
plasmacytoid dendritic cells (pDC), a pivotal immune cell subset that is known to recognise influenza
virus, but not bacteria [15, 16]. Our data also revealed that the TLR7 pathway mediates IFI27 upregulation.
This is consistent with established literature, which shows that pDCs use TLR7 to recognise
single-stranded RNA viruses, such as the influenza virus [17, 18]. We also found that bacteria-recognizing
TLRs (TLR1, TLR2, TLR4, TLR5 and TLR6) did not induce IFI27 upregulation, whereas TLR7 ligand did.
These findings, together with previous studies [17–20], collectively support the notion that the TLR7-pDC
pathway represents a virus-specific detection system (for single-stranded RNA viruses). This mechanistic
insight helps explain the ability of the IFI27 biomarker to differentiate between influenza and bacterial
infections.

The prospective validation cohort in the present study had two design features (large sample size and
prospective patient recruitment), which made it possible to address an important limitation in previously
published biomarker studies. In previous studies, the validation cohort typically used patient phenotypes
that were clearly “infectious” or phenotypes that were clearly “non-infectious” (e.g. healthy volunteers). A
recent study by TSALIK et al. [13] demonstrated that using such clearly defined phenotypes resulted in an
over-estimation of biomarker performance. A methodologically more vigorous approach should include
less distinctive phenotypes, such as patients with non-infectious “flu-like” illness [13]. Our prospective
validation cohort had a significantly greater number of non-infectious patients compared to previous
studies (table 1). Another strength of the present study was the recruitment of patients prospectively.
Patients presented in an undifferentiated manner, whereby both infectious and non-infectious aetiologies
were possible, thus simulating a realistic clinical scenario commonly faced by clinicians. Furthermore,
many of our patients had respiratory comorbidities (asthma 17% and chronic lung diseases 22%), which
could also mimic respiratory infections (e.g. with similar symptoms of cough and shortness of breath).

TABLE 3 Diagnostic performance

Aims Influenza
specific

Overall
diagnostic

accuracy %#

Genes included
in signature n

Subjects in
validation
cohort n

Inclusion of
non-infectious
phenotypes in

validation cohort

Multi-gene signatures
GSE60244 [11] Discriminate viral versus

bacterial infections
No 96 10 46 Yes

GSE63990 [13] Discriminate viral infection
from all conditions¶

No 87 33 273 Yes

GSE6269 [9] Discriminate influenza versus
bacterial infections

Yes 87–95 35 75 No

GSE42026 [10] Discriminate influenza versus
bacterial infections

Yes 92 734 43 No

Single-gene signature
IFI27 Discriminate influenza

infection from all conditions¶

or from bacterial infection

Yes 87–91 1 402 Yes

GSE: reference number for publicly available gene expression dataset in the National Centre for Biotechnology Information Gene Expression
Omnibus (reference for published paper is provided beside each GSE number). #: the most common parameter reported by all studies. Other
parameters, such as specificity and sensitivity, were not reported in most studies. In one study (GSE6269), the gene expression signature was
validated in several cohorts, each yielding its own prediction accuracy; therefore, a range of prediction accuracy is presented here. One study
(GSE68310) did not assess diagnostic performance; therefore, it is not included in the table. ¶: includes bacterial and viral infections and
non-infectious “flu-like” illness.
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Our cohort therefore recapitulated many of the real-world challenges and embodied the most stringent
conditions under which the performance of IFI27 could be tested.

A single-gene biomarker, such as IFI27 circumvents several methodological problems faced by multi-gene
biomarkers. Multi-gene biomarkers are vulnerable to over-fitting (using too many genes to develop the
disease signature). This results in poor reproducibility across external patient populations. In the present
study, we minimised over-fitting by focusing on a small number of biomarkers, from which we identified a
single biomarker that was highly reproducible across multiple patient cohorts. Another common problem
with multi-gene biomarkers is that there are many non-overlapping genes among published studies. This
creates an immense translational problem, because clinicians cannot determine which gene list to use with
their patients. The simplicity of using a single-gene biomarker such as IFI27 represents a major step
forward in overcoming this translational roadblock. A third problem with multi-gene lists is that most
studies have been derived from microarray studies. Here, we validated IFI27 on a real-time PCR platform,
which is widely available in most hospitals. This opens the door for other clinicians to perform
independent validation, an essential next step towards translation into clinical practice.

It is worth noting that existing multi-gene biomarkers do have an advantage over a single biomarker.
Multi-gene biomarkers broadly reflect host response, by capturing a constellation of genomic signals from
different parts of the immune signalling pathway. In comparison to multi-gene biomarkers, a single
biomarker might underestimate both the range and depth of the host response. However, our findings
indicate that IFI27 levels did provide a reasonable assessment of the immune signalling pathway. This was
evidenced by a high level of correlation between IFI27 and many genes in the interferon pathway (90%)
and immune system pathway (69%). Altogether, these findings suggest that IFI27, as a single-gene
biomarker, is reflective of the immune response to a similar extent as multi-gene biomarkers.

IFI27 differs from previously established influenza biomarkers (e.g. OAS and PKR) in three important
aspects. First, IFI27 performed significantly better than other biomarkers, as demonstrated in our
microarray analysis. Second, IFI27 is produced predominantly by plasmacytoid dendritic cells (pDCs),
immune cells that recognise respiratory viruses. In contrast, most biomarkers are produced by immune
cells (e.g. neutrophils and macrophages) that can be activated by bacteria. Third, IFI27 has considerable
discriminatory power in differentiating between influenza and bacterial infections. Our data show that as a
single-gene biomarker, IFI27 alone provides equivalent diagnostic capability comparable to that of
multi-gene biomarkers. Previous biomarkers do not have comparable capabilities.

Nevertheless, the present study has limitations. Firstly, the specificity of IFI27 in differentiating between
influenza virus and other respiratory viruses is moderate (AUC 83%). Second, we had insufficient data on
patients with DNA viral infections (e.g. cytomegalovirus) or virus-bacteria co-infection; our cohort had
only thirteen such cases, which is too small a number for in-depth analysis. In our previously published
study, we found that a longitudinal study design was needed to investigate patients with co-infection (in
order to capture the transition from influenza infection to co-infection) [21]. Unfortunately, the current
study is limited by the fact that patient samples were collected only at one time point. Third, our study did
not assess important factors that might affect clinical decision-making, such as prior probability or the
cost of missed diagnoses and its impact on patient/economic outcomes. These factors are best addressed in
future cost-benefit studies or clinical trials.

In conclusion, our findings suggest that IFI27 is a promising immune biomarker; however, further study is
needed to evaluate its clinical utility in patients with viral/bacterial co-infections.
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