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ABSTRACT  There is accumulating evidence in support of the significant improvement in survival rates
and clinical outcomes when pulmonary arterial hypertension (PAH) is diagnosed at early stages.
Nevertheless, it remains a major clinical challenge and the outcomes are dependent on invasive right heart
catheterisation.

Resulting from pathophysiological processes and detectable in exhaled breath, volatile organic
compounds (VOCs) have been proposed as noninvasive biomarkers for PAH. Studies have confirmed
significant alterations of the exhaled VOCs among PAH patients when compared to controls and/or
patients with other respiratory diseases. This suggests exhaled breath analysis as a potential noninvasive
medical application in the field of PAH.

In this article, we review and discuss the progress made so far in the field of exhaled volatolomics (the
omics of VOCs) as a potential noninvasive diagnostics of PAH. In addition, we propose a model including
possible biochemical pathways on the level of the remodelled artery, in which specific VOCs could be
detectable in exhaled breath during the early phases of PAH. We debate the different analytical approaches
used and recommend a diagram including a “bottom-top” strategy, from basic to translational studies,
required for promoting the field.
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Pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterised by
extensive occlusion of small to mid-sized pulmonary arterioles. The gradual increase in mean pulmonary
arterial pressure (mPAP) leads to the development of high resistance, leading eventually to right-sided
heart failure and death [1-3]. PAH is a subset of precapillary group 1 pulmonary hypertension, defined by
a resting mPAP >25mmHg, pulmonary artery wedge pressure (Ppaw) <15 mmHg, and pulmonary
vascular resistance (PVR) >3 Wood units at right heart catheterisation [2, 4]. In Europe, prevalence of
PAH ranges between 15 and 60 subjects per million population, and the annual incidence is 5-10 cases
per million [1, 5]. When untreated, the mean survival is 2.8 years [2, 3, 6].

Vascular lesions associated with PAH are complex and take in all layers of the vessel wall. Cellular
hypertrophy, hyperplasia, local inflammation, overproliferation and resistance to apoptosis, endothelial to
mesenchymal cell transition, exaggerated migration and accumulation of extracellular matrix components
in PAH are well documented, yet other essential pathomechanisms remain unclear [7-9]. Although a wide
range of therapeutic agents have been established for the management of PAH, they fail to fully improve
symptoms and survival. PAH remains an incurable disease, and lung transplantation continues to be the
main treatment in severe cases [2, 6].

Importance of early detection

PAH is often diagnosed by right heart catheterisation at its advanced stages [10, 11], and is associated
with high early mortality, despite therapeutic intervention [3, 12-14]. Although accumulating evidence
supports that significant improvement in survival rates and clinical outcomes is achieved when PAH is
diagnosed at early stages [3, 15], it continues to be challenging [12, 16-18]. This is mainly due to the
clinically silent or unspecific early phase, as well as due to the controversy between haemodynamics and
functionality [19]. Despite advances in the available tools for assessment of PAH, including Doppler
echocardiography and lung function and exercise tests, their predictive value remains questionable.
Biomarkers, such as brain natriuretic peptide (BNP) and N-terminal pro-BNP have been correlated with
haemodynamics and mortality in PAH; however, their sensitivity can be low and is affected by kidney
function [19]. On the whole, the primary definitive diagnosis is frequently delayed for as long as 2 years
from the appearance of early symptoms, which also represents a significant challenge [20]. Accumulating
evidence suggests that systematic testing, i.e. screening for PAH in high-risk populations, would promote
early diagnosis and intervention, offering an opportunity to improve patient outcomes. Therefore, there is
an unmet and urgent need for reliable noninvasive biomarkers for the early detection of PAH [19-21].

Exhaled volatolome as biomarkers

Volatile organic compounds (VOCs), produced constantly by physiological processes, are detectable at low
concentrations in exhaled breath [22-26]. Pathophysiological processes affect their production and lead to
changes in the VOC profile of exhaled breath, referred to as the exhaled volatolome. Thus, identification
and quantification of the exhaled volatolome could provide informative noninvasive biomarkers [22-34].
Due to their proximity to the blood-air barrier, recognisable and easily detectable shifts in the exhaled
volatolome are to be expected in respiratory diseases [24, 31, 35-40]. In these cases, VOCs do not circulate
in the peripheral blood system, from which they might be metabolised or stored in fat compartments;
rather, they are expressed almost immediately in exhaled breath, accompanying the pathophysiology [24,
31, 35]. Significant shifts in the exhaled volatolome have been reported in many respiratory diseases,
including lung cancer [24, 25, 28, 31, 33], tuberculosis [41, 42], chronic obstructive pulmonary disease
(COPD) [43, 44], asthma [45], pulmonary embolism [46], pneumonia and cystic fibrosis [47, 48].

Changes in the spectrum and/or concentrations of exhaled VOCs could be due to a variety of abnormal
processes, reflecting alterations in the biochemistry of the blood. Oxidative stress, inflammation,
unbalanced enzymatic activity, carbohydrate and lipid metabolism and other mechanisms are possible
sources of disease-related VOCs [22-24, 28, 31, 32].

In PAH, changes in the exhaled volatolome could result from the pathophysiological process of
remodelling that occurs at the level of the arterioles. However, compensatory mechanisms accompanying
the development of PAH could be an additional source of volatolomic alterations. Anatomical and
physiological changes in the lungs and heart and fluctuations in the pulmonary circulation could
potentially create further alterations in the exhaled VOC profile and concentrations [8, 9]. Arterial
remodelling in PAH, for example, is characterised by the overproliferation of endothelial cells and smooth
muscle cells. Excessive proliferation could result in local hypoxia, leading to anaerobic metabolism by the
cells [31, 49]. In the glycolytic pathway of energy production, ketones and alcohols are excessively produced
and ultimately excreted in the exhaled breath [50]. Alternatively, enhanced proliferation demands greater
metabolism of cholesterol, during which isoprene, for instance, is formed along the mevalonic pathway of
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cholesterol synthesis in the cytosolic fraction [51]. Inflammation is another major hallmark of PAH. High
levels of pro-inflammatory cytokines in lung samples [52, 53], as well as increased numbers of macrophages
in plexiform lesions and perivascular inflammation of PAH patients’ lungs have been documented [54-57].
Increased inflammatory activity could result in excessive production of reactive oxygen species (ROS),
leading to local peroxidation of lipids and fatty acids. For example, alkanes (cyclic saturated hydrocarbons)
are by-products of the peroxidation of polyunsaturated fatty acids [22, 23, 31, 51].

Based on known pathomechanisms on the vascular level, as well as experimental models in the field of
VOCs, we have put together a hypothetic model of vascular remodelling as a potential source of VOCs;
this model is presented in figure 1.

Exhaled volatolome as biomarkers in PAH

The complex pathological mechanisms involved in PAH, as described earlier, could be a source of a wide
range of volatile biomarkers in the breath. Several studies have already indicated the presence of alterations
in breath volatolome in PAH patients; MANSOOR et al. [58] compared the composition of exhaled breath
condensate of 27 idiopathic (I)PAH patients with 30 healthy controls. Two VOCs were uniquely identified
among the control group, and 10 other VOCs were uniquely expressed among the patients’ samples. Of
the four VOCs that were common to both groups, 1-methyl-4-(1-methylethenyl)-benzene was significantly
lower in IPAH patients compared to the controls. Furthermore, the concentrations of six VOCs were
correlated with mPAP, PVR or Ppaw. In a more qualitative approach, a pattern recognition algorithm was
applied to the measured VOCs. The model discriminated between IPAH patients and controls with an
accuracy of 75.4%. Although interesting, the identification of the statistically validated VOCs was based
solely on a mass spectrometric analysis. This approach is lacking, due to a very similar spectrum of ionised
fragments of several compounds, and therefore the results might not be reproducible. To overcome this
obstacle, it is recommended that the identification is undertaken using the analysis of pure standards,
confirming the identity of each VOC, as well as calibrating curves in order to estimate the absolute
concentration of the VOCs, rather than the ion counts of each explored peak [22, 51]. On the other side,
the IPAH group consisted of patients in advanced and severe stages of the disease (New York Heart
Association (NYHA) classification 3 and 4), raising the crucial question of whether the reported
differences in the volatolome would be valid at earlier stages of disease [58].

CikacH et al. [59] explored the exhaled volatolome of 31 PAH patients and 34 controls recruited in two
phases (training and validation sets). Among the 21 VOCs explored, the concentrations of 2-nonene,
2-propanol, acetaldehyde, ammonia, ethanol and pentane were elevated in PAH patients compared with
control subjects, whereas 1-decene and 1-octene were significantly lower in the same patients. Applying
mathematical discriminant analysis to VOC concentrations, the model scored 86.1% accuracy in the
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FIGURE 1 Hypothetical schema of possible sources of volatile organic compounds at the level of a remodelled
artery in pulmonary arterial hypertension (PAH). Excessive proliferation associated with local hypoxia would
promote glycolysis as an energy source, leading to the production of ketones and alcohols. In addition, cell
proliferation demands high cholesterol metabolism that induces higher levels of isoprene. Production of
reactive oxygen species (ROS) by inflammation leads to the oxidation of proteins and fatty acids, which release
a wide range of hydrocarbons. EC: endothelial cell; SMC: smooth muscle cell.
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training phase and 79.3% in the independent validation set. In addition, the concentration of exhaled
ammonia was significantly associated with right atrial pressure and mixed venous oxygen saturation, after
adjustment by age and sex, suggesting it as an independent breath biomarker for PAH. Conversely, blood
ammonia levels were similar between the groups, and were not associated with breath concentration, nor
any clinical feature. Thus, in the context of locally increased glutaminolysis [60] leading to
hyperproliferative phenotype in PAH, the cells may generate more ammonia locally that is then expressed
in exhaled breath, although not enough to affect whole blood concentration. These findings not only
suggest a biomarker for the severity of PAH, but also attempt to link up the volatolome with the
pathological mechanisms involved in PAH [59]. Nevertheless, ammonia has a major limitation as a
disease-specific breath biomarker. This is because ammonia is reported as being raised in the exhaled breath
of patients diagnosed with other diseases, including (but not only) kidney disease [61], inflammatory bowel
diseases [62] and asthma [63], making it less reliable as a standalone test for PAH.

MazzoNE et al. [64] enrolled 20 PAH patients as a control group to test the feasibility of a colorimetric
sensor array for volatolome collective assessment to diagnose lung cancer. The results indicated that the
collective breath volatolome of lung cancer patients differed from PAH, idiopathic pulmonary fibrosis,
COPD and healthy controls. Once trained, the sensor array could discriminate between the diseases with a
sensitivity of 73.3% and a specificity of 72.4%. The results were not influenced by sex, age, histology or
smoking history [64]. Although innovative and easy to perform, in this qualitative approach the specific
altered VOCs cannot be identified.

We have previously published a proof-of-concept in which an array of nanotechnology-based sensors for
collective breath volatolome analysis was useful to detect and classify PAH. Using a different approach for
breath analysis, we relied on the collective profile rather than specific alterations in the VOC
concentrations in exhaled breath. Mimicking the sense of smell, an array of nonselective gas sensors was
used to analyse breath samples of 22 PAH patients and 23 healthy controls. The signals obtained from the
sensors after exposure were significantly different between samples from the two groups. A receiver
operating characteristic-based classifier was obtained, discriminating between the samples with an accuracy
of 92%. A second classifier was established to identify heritable PAH patients with mutations in the bone
morphogenetic protein receptor type 2 (BMPR2) gene. The classifier successfully classified heritable PAH
(n=7) compared to IPAH (n=15), scoring an overall accuracy of 87%. A third model indicated a
correlation between the signals obtained from the sensor array and the severity of the patient’s disease.
With 91% accuracy, the samples were rated according to the NYHA classification, comparing the less
severe cases (classes 1 and 2) and severe cases (class >3) [65]. Besides showing the high potential of
qualitative breath analysis using nanosensor arrays to diagnose PAH, we showed that the breath
volatolome is different in the mild stages than in more severe phase of the disease; the results also suggest
that the pathological mechanisms of idiopathic and heritable PAH differ, as indicated by distinct breath
volatolomes. However, the sample size in this case was relatively small, and further validation is required
with an independent cohort [65]. Complementary quantitative gas chromatrography linked with mass
spectometric analysis of 45 breath samples following the initial study confirmed significant differences in
the concentrations of 10 breath VOCs associated with PAH, and subgroups that included the BMPR2 gene
mutation PAH [66]. Currently, a clinical trial for validation (and expansion) is ongoing, with a goal of
recruiting 400 volunteers, including IPAH patients, heritable PAH patients, high-risk subjects without
PAH (asymptomatic relatives of familial PAH cases carrying a BMPR2 mutation) and chronic
thromboembolic pulmonary hypertension patients (ClinicalTrials.gov identifier NCT02782026)

Together, these studies support the possibility that exhaled breath biomarkers could serve as a medical
application in the detection and management of PAH.

Are exogenous VOCs actively involved in PAH?

Quite unexpectedly, when screening the VOCs already reported in association with PAH, it became apparent
that some of the compounds identified were of exogenous origin. 1-methyl-4-(1-methylethenyl)-benzene,
furan, tetrahydro-2,2,4,4-tetramethyl, benzaldehyde, N-ethyl-benzenamine, benzothiazole and others are not
endogenously formed [58, 59, 66]. These compounds are considered pollutants, possibly due to exposure to
cigarette smoke, air pollution and radiation [31]. Possibly, their high volatility and reactivity allow these
compounds to leak into the cytoplasm of respiratory cells, leading to undesired and adverse effects, including
peroxidative damage to enzymes and DNA. The accumulative damage of prolonged exposure is assumed to
initiate and/or contribute to the pathogenesis of lung cancer [31].

Vascular remodelling in PAH shares analogous features with carcinogenesis. Pulmonary vascular lesions in
PAH patients have cancer-like characteristics [7]. Resistance to cell death, a hyperproliferative phenotype,
deregulation of cellular energetics, angiogenesis and tumour-promoting inflammation are common
hallmarks of PAH and lung cancer [7]. Therefore, it is reasonable to link the adverse effects of inhalation

https://doi.org/10.1183/13993003.01897-2016 4



PULMONARY VASCULAR DISEASES | M.K. NAKHLEH ET AL.

of pollutant VOCs to the initiation/progression of PAH. MONTANI et al. [67] ran a case—control study in
which they put to the test the possible association of occupational exposure to organic solvents and the
risk of pulmonary veno-occlusive disease (PVOD). In 33 PVOD and 65 PAH cases, PVOD was
significantly associated with occupational exposure to organic solvents, particularly trichloroethylene
(TCE) with an adjusted odds ratio of 8.2. For example, mice exposed to TCE developed lung injuries
accompanied by increased oxidative stress, which is known to be involved in vascular remodelling [68, 69].
This suggests that volatile compounds from exogenous sources could directly contribute to the
pathophysiology of respiratory and cardiovascular diseases.

Reproducibility and analytical approaches in breath volatolomics

One particular controversy found in published data is the wide variance and mismatch of results from
different studies. For instance, in one case, the authors report that some of the VOCs were exclusively
expressed by PAH patients, whereas others have shown that both patients and controls share the same
profile of exhaled VOCs, but with differences in their concentrations [58, 59, 66]. In addition, the number
and identity of the VOCs associated with PAH vary in the different studies. In all, it raises the question of
the repeatability and reproducibility of breath analysis in general, and in PAH in particular. Nevertheless,
this could be explained by different breath sampling procedures and analytical methods. Different
sampling procedures and pre-concentration methods could result in the “capture” of different spectra of
the expressed breath volatolomes [22]. In addition, each of the analytical instruments has a different
sensitivity and limit of detection, and the small size and heterogeneity of the patient groups could preclude
obtaining robust VOC biomarkers. Despite these differences, the overall take-home messages of the reports in
the literature are similar, i.e. there are significant alterations in the breath volatolome in PAH.

In general, the search for uniquely expressed exhaled VOCs in a given disease has not yet been successful.
Indeed, none of the recorded VOCs alone could assist in diagnosis [27, 33, 70-77]. For example, a large
portion of the proposed breath biomarkers that have been suggested for PAH were also associated with other
diseases, one such case being ammonia. This suggests that when two or more diseases share common
pathological mechanisms, a similar range of exhaled VOCs could be affected. Conversely, the concentrations
of part of the VOCs could be affected by more than one type of pathophysiology. Therefore, in a complex
disease such as PAH involving multiple pathophysiological processes and several systems/organs, it is
unlikely to find unique breath VOCs (absent in nonpatient controls and/or other diseases). Therefore, the
collective volatolome assessment is potentially more realistic as a future medical application in the detection
of PAH. As already reported, an intelligent artificial olfactory system consisting of arrays of
nanotechnology-based sensors could be trained for the detection and classification of PAH [65, 66].
Learning from the mammalian sense of smell, cross-reactive (nonselective) sensors are used for the collective
sensing of the VOC spectrum in breath [24, 29, 32, 78, 79]. Combined with pattern recognition algorithms,
the collective, yet specific, breath-signature associated with PAH could be determined. Depending less on the
concentration of each VOC, the collective analysis is more robust and resistant to possible confounding
factors [24, 29, 32, 78, 79].

Perspective: volatolomics of the remodelled artery for early diagnosis

So far, all studies have explored volatolomic alterations (quantitatively and/or qualitatively) of PAH
patients with established and advanced disease [58, 59, 64, 66]. At this stage of the disease, a variety of
anatomical as well as physiological changes occur at the level of the lungs, heart, immune/inflammatory
system and circulation [8, 9]. These compensatory and/or secondary mechanisms could also affect the
exhaled volatolome. Therefore, it is unlikely that the overall changes in the volatolome described are
representative of the early phases of PAH, i.e. the primary pathological mechanisms, at the vascular level.
Furthermore, exhaled VOCs could be affected by unrelated mechanisms, medications, comorbidities and
haemodynamic and cardiac effects [80, 81]. Therefore, it is doubtful that the VOCs that have been
reported could assist in the early detection of PAH.

Arterial remodelling in the very early stages of PAH involves several molecular and cellular pathways that
could affect the specific spectra of VOCs. This silent or vague phase can last up to 4 years before a formal
diagnosis is made [20]. Therefore, we propose that the identification and targeting of these VOCs should
be the first step towards early noninvasive diagnosis of PAH. To succeed in this challenge, we suggest two
complementary approaches. First, clinical evaluation to further explore the volatolomic changes in PAH
and its subsets, with a focus on high-risk subjects without known PAH (for example, familial cases of
BMPR2 mutations). Periodic clinical, biological and volatolome assessment of this group could help to
correlate the development of the disease with volatolomic changes, at its early phases. Once the disease is
initiated leading to early haemodynamic consequences, the search should focus on the changes in exhaled
breath volatolome prior to the symptomatic phase (figure 2).
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Additionally, basic biological experiments run in parallel are needed, in which VOCs emitted directly by
vascular cells, involved in the remodelling process, should be identified and investigated. To this end, lung
specimens, for example from PAH patients after lung transplantation, could serve to establish
microvascular endothelial and smooth muscle cell cultures. VOCs emitted by those cells could be
identified and analysed quantitatively. Ex vivo in-culture expression of these VOCs is essentially linked to
some pathological mechanisms at the vascular cell level, while unrelated to the haemodynamics or to other
secondary mechanism associated with advanced stage PAH. Therefore, these VOCs could potentially
represent “pure” vascular remodelling-specific biomarkers. We must also pinpoint the importance of the
association between the production of specific VOCs and known or suspected metabolic pathways in PAH.
Exposure of healthy vascular cells to stimuli, such as inflammation, hypoxia, ROS, excessive proliferation
state/resistance to apoptosis and others could tell us how much the vascular cell volatolome is affected by
each pathological process and the balance between them (figure 2).

Although animal models could be informative at this phase, very challenging aspects should be first
addressed in order to benefit from such studies, as follows. 1) Animal models for pulmonary hypertension
are mostly developed in small animals (induced in rats or mice using monocrotaline (MCT), exposure to
hypoxia or Sugen-hypoxia) [82]. Thus, it is extremely challenging to collect a sufficient volume of exhaled
breath (>500 mL per animal per test), taking into account their tidal volume [77]. 2) It remains unclear
how much the mentioned models represent the actual disease occurring in humans, particularly in terms
of chronological events and poor phenotyping [82, 83]. For example, the MCT model would produce
features of severe pulmonary hypertension and heart failure within 3 weeks; however, due to MCT
cytotoxicity it could also affect other unrelated organs. The MCT model is also suggested to cause
pulmonary interstitial oedema, myocarditis and hepatic veno-occlusive disease that are not characteristics
of human pulmonary hypertension [84]. As a consequence, these additional pathomechanisms would
probably result in further unspecific volatolomic changes that could be mistakenly associated with
pulmonary hypertension. Therefore, it would be very challenging to correlate the volatolomic changes in
PAH patients and these animal models.

Overall, early-phase PAH volatile biomarkers could be identified and targeted for exhaled breath diagnostics
in the future. It might help to find the origin of each of the VOCs, and possibly provide knowledge on the
exact mechanisms leading to each of the volatolomic changes. Thus, monitoring these VOCs could be
useful for PAH patient management, follow-up and monitoring.

Volatolomics in secondary PAH/pulmonary hypertension

It is admitted that IPAH is usually diagnosed in its advanced stages, due to the unclear and unspecific
clinical presentation of its earliest stages. As already suggested in the literature, a noninvasive screening test
would be very useful in these cases [19]. Therefore, a breath analysis based test could be a safe, easy to
perform, rapid and repeatable screening tool that physicians could use as an indicator in the vague early
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FIGURE 2 Schematic diagram of the suggested “bottom-top” experimental flowchart towards designated pulmonary arterial hypertension (PAH)
diagnostics, based on exhaled volatolome analysis. An ex vivo phase to explore and determine volatile organic compounds (VOCs) at the vascular
level as early-phase biomarkers accompanied by clinical studies to determine volatolome changes in exhaled breath of PAH patients. After
identification of target VOCs found in early phases of the vascular phase and in the exhaled breath, a translational phase is required to establish a
designated breath analyser for the early diagnosis of PAH.
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phases. Therefore, in this context, focusing on the heritable group with BMPR2 mutation and their
relatives would be a simplified strategy to determine the early volatolomic changes associated with PAH.
As reported, 20-30% of this population will eventually develop PAH [85], and therefore periodic breath
tests for this group could be a key factor in monitoring volatolomic alterations as soon as the arterial
remodelling begins, indicating the need for right heart catheterisation.

As for more complex cases, such as PAH associated with connective tissue disease or HIV infection, or
pulmonary hypertension secondary to heart disease or COPD, the basic research approach should be
different. It is anticipated that due to the complexity of the pathophysiological process and comorbidities, the
volatolomic patterns would be more complicated to understand. It remains unclear how the exhaled VOC
profile would look, in the presence of two diseases (COPD and pulmonary hypertension, for example), since
a portion of the VOCs could be affected by molecular pathways involved in each of the two diseases.
Volatolomic changes associated with (“pure”) COPD, for example, have been already published [43, 86], thus
it will be necessary to evaluate subjects with secondary pulmonary hypertension, in a group of COPD
patients, in order to pinpoint the specific volatolomic changes associated with the combination of both
diseases. In fact, it is reasonable to anticipate that in these cases a third and specific volatolomic pattern
would be found; representing the pathomechanism involved in both diseases, and would be useful for the
classification of this specific group of patients. We suggest this strategy to be tested and evaluated for the
classification, rather than detection, of pulmonary hypertension or PAH complex subclassifications.

Concluding remarks

With right heart catheterisation as the gold-standard diagnostic method, PAH is usually diagnosed in its
advanced stages, negatively affecting clinical outcomes and survival rates. The exhaled volatolome is a
database of information regarding cellular and molecular activity, and represents a unique window onto
the pathological and metabolic pathways involved in PAH. Exhaled biomarkers could be useful in early
diagnostics of PAH as noninvasive procedure. However, major basic and translational research is still
required to determine the exhaled VOCs linked with the very early stages of the diseases before developing
and training a simple breath analyser designated for early detection of PAH.
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