It is true that the patients we recruited from inpatients admitted with bronchiectasis were more likely to have severe clinical characteristics and poorer FEV1 [8]. However, since the comparisons between both groups in this study were at the same stage, the results still have significant clinical value. In addition, the data from pulmonary function tests were collected when the patients were relatively stable.

Finally, all of the patients with bronchiectasis were routinely asked to sign a consent form when they were admitted to the hospital in our department. Patients signed the consent form to authorise follow-up every 3 months through face-to-face interviews, or telephone interviews if that was not convenient. The reason and date of the exacerbation were recorded according to their medical records. Our study sought to observe the impact of asthma on bronchiectasis exacerbation in a real-world setting. The diagnosis and treatment of bronchiectasis concomitant with asthma remains challenging, and more accurate spirometric and scoring diagnostic methods are needed.

Asthma increases the risk of bronchiectasis exacerbation; however, more evidence is needed http://ow.ly/dWm0300OcFj

Bei Mao1,2,3, Jia-Wei Yang1,2,3, Hai-Wen Lu1 and Jin-Fu Xu1,2

1Dept of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China. 2Dept of Medicine, Soochow University, Suzhou, China. 3These authors contributed equally.

Correspondence: Jin-Fu Xu, Dept of Respiratory Medicine, Shanghai Pulmonary Hospital, No. 507 Zhengmin Road, Shanghai, 200433, China. E-mail: jfxucn@gmail.com.

Received: May 02 2016 | Accepted: May 26 2016

Conflict of interest: None declared.

References

Obstructive sleep apnoea and bone health

To the Editor:

We thank LIGUORI et al. [1] for sharing their interesting study about patients suffering from obstructive sleep apnoea (OSA) and their tendency towards lower bone mineral density (BMD) in the lumbar spine and femur compared with control subjects matched for age, body mass index and physical activity. The researchers defined “osteopenia” as a T-score value <−1 SD and “osteoporosis” as a T-score value <−2.5 SD. They also suggested that OSA could be detrimental to BMD, resulting in osteopenia and osteoporosis. However, there are some concerns with this study.

First, the mean±SD age of the subjects included in this study was 51.17±11.82 years in the OSA population and 51.10±11.68 years in the control group, which means that many of the subjects were <50 years old. The author classified these subjects according to T-score, which is the BMD value compared with a healthy subject of the same sex in who is at peak BMD. However, according to the recent consensus of the International Society for Clinical Densitometry [2], when researching males <50 years old, a Z-score should be used, representing a value that can be compared with those of subjects matched for age and sex. A Z-score of −2.0 or lower is defined as “below the expected range for age”. We suggest that the authors
should divide the subjects into two groups, older than and younger than 50 years of age, and use T- or Z-scores in the different age groups, respectively. In addition, the authors should not use “osteopenia” or “osteoporosis” to define subjects <50 years old.

Moreover, fracture is the most serious consequence of osteoporosis. BMD might be used to predict fractures but the sensitivity is very low. To better understand the effect of OSA on bone health, fracture rate might be a more useful marker. A previous study showed that hypoxia during sleep might be a risk predictive factor for falls and fractures in elderly men [3]. The result of Ligouri et al. [1] suggests that OSA might be a risk factor for predicting fractures, in addition to low BMD. However, this hypothesis should be confirmed using a clinical study.

@ERSpublications
To better understand the effect of OSA on bone health, fracture rate might be a more useful marker than BMD

Jia-Yu Zhong and Ling-Qing Yuan
Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.

Correspondence: Ling-Qing Yuan, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China. E-mail: allenylq@hotmail.com

Received: May 02 2016 | Accepted: May 26 2016

Support statement: This work was supported by funding from the National Basic Research Program Programme of China (2014CB942903) and the National Natural Science Foundation of China (81270962). Funding information for this article has been deposited with the Open Funder Registry.

Conflict of interest: Disclosures can be found alongside this article at erj.ersjournals.com

References