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ABSTRACT Chronic respiratory diseases, including pulmonary fibrosis, chronic obstructive pulmonary

disease (COPD) and lung cancer, are the second leading cause of death among Europeans. Despite this,

there have been only a few therapeutic advances in these conditions over the past 20 years. In this review we

provide evidence that targeting the epidermal growth factor receptor (EGFR) signalling pathway may

represent a novel therapeutic panacea for treating chronic lung disease. Using evidence from human patient

samples, transgenic animal models, and cell and molecular biology studies we highlight the roles of this

signalling pathway in lung development, homeostasis, repair, and disease ontogeny. We identify

mechanisms underlying lung EGFR pathway regulation and suggest how targeting these mechanisms

using new and existing therapies has the potential to improve future lung cancer, COPD and pulmonary

fibrosis patient outcomes.
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Introduction
Chronic respiratory diseases, including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD)

and lung cancer, cost European healthcare systems in excess of J100 billion per annum and together

represent the second most common cause of death among Europeans [1]. Despite this significant disease

burden, there have been few therapeutic breakthroughs and mortality rates for these conditions have

remained largely unchanged for many years [2]. In contrast, research conducted over the past decade has

dramatically improved our understanding of the genomic and signalling pathway changes associated with

chronic respiratory disease [3–7]. These advances have allowed clinicians to investigate whether stratifying

and treating patients based on the presence of specific mutations might improve disease outcomes.

Unfortunately, this research has uncovered extensive heterogeneity present within and among most

respiratory diseases. These data suggest that an additional understanding of which mutations are

responsible for respiratory disease initiation will be needed to provide a more tractable approach for

improving patient survival [8].

The epidermal growth factor receptor (EGFR) signalling pathway is a strong contender for both initiating

and determining clinical outcomes in many respiratory diseases. Deregulation of the EGFR pathway causing

aberrant EGFR signalling is associated with the early stage pathogenesis of lung fibrosis, cancer and

numerous airway hypersecretory diseases, including COPD, asthma and cystic fibrosis [9–11]. In this

review, we provide evidence that targeting the EGFR signalling pathway may represent a novel therapeutic

approach for treating these multiple lung diseases. We describe the mechanisms underlying EGFR pathway

regulation in normal and diseased airways and suggest that targeting these using established and in-

development therapies has the potential to improve outcomes in chronic respiratory disease.

The EGFR signalling pathway
The EGFR signalling pathway is complex and comprises four cell surface receptors, at least 13 extracellular

ligands, and four key downstream effector pathways that regulate a wide variety of cellular functions (fig. 1)

[12]. Epidermal growth factor (EGF) receptors include HER1 (EGFR/ErbB1), HER2 (ErbB2), HER3

(ErbB3) and HER4 (ErbB4), all of which contain a cysteine-rich extracellular ligand binding domain,

a single-pass a-helix transmembrane domain, a C-terminal signalling domain and, with the exception

of HER3, a cytoplasmic tyrosine kinase domain [13]. Ligand–receptor binding causes dimerisation

either with another receptor of the same type (homodimerisation) or with a different member of the

EGFR family (heterodimerisation) [14, 15]. EGFR dimerisation then activates one or more downstream

effectors including the MEK/ERK (MAPK kinase/extracellular signal-regulated kinase), PI3K/AKT

(phosphatidylinositol-3-kinase/protein kinase B), STAT (signal transducer and activator of transcription),

and mTOR (mammalian target of rapamycin) pathways through receptor autophosphorylation and

cytoplasmic protein binding [16]. These in turn act as critical mediators of airway and alveolar homeostasis,

with aberrant activation within one or more pathway components capable of driving a variety of respiratory

pathologies. Common pathological outcomes associated with EGFR pathway misactivation include

excessive airway proliferation, mucus overproduction and hypersecretion, and progressive distal lung

fibrosis (fig. 1).

Given the complexity of the EGFR signalling pathway, it is perhaps unsurprising that the diversity of

outcomes following receptor activation is mediated through a variety of methods and control points. These

include ligand choice and binding affinity, receptor homo- and/or heterodimerisation, extracellular ligand

release and physical segregation of ligands and receptors, accessibility and abundance of intracellular and

cell surface antagonists, speed and capacity for receptor recycling, and choice of downstream signalling

pathway and subsequent gene regulation (fig. 2).

Functional selectivity, or divergent activation of downstream pathways by different ligands binding to the

same receptor, may be mediated by subtle differences in the conformation of ligand–receptor complexes

[17]. All EGF-family ligands are synthesised in a membrane-docked form that must be further processed in

order to release biologically active forms [18]. These cleaved proteins contribute to the extracellular

signalling environment, either directly through the activation of cell surface receptors or through binding to

proteoglycans in the extracellular matrix to form a reservoir of growth factors that can later be freed by

extracellular proteases. Membrane-anchored ADAMs (disintegrin metalloproteases) are key regulators of

EGFR ligand release. For example, ADAM10 is known to cleave EGF and betacellulin, while ADAM17 is

considered the primary cleavage enzyme for many other EGF family ligands [19, 20]. Ligand cleavage can

also occur via matrix metalloproteinases. For example, HER1 is transactivated upon stimulation of G-

protein-coupled receptors because HB-EGF is released from its pro form [21] via the formation of a cell

surface signalling complex including MMP7 [22].
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Receptor and ligand segregation provides an additional mechanism for regulating EGFR signalling [23, 24]. In

airways, ligands produced apically are physically prevented from interacting with their receptors present

basolaterally on different cell types. When the epithelium is compromised, cell–cell contact is disturbed and

ligands interact with normally inaccessible receptors on the basolateral membrane of airway basal cells [23, 24].

The subsequent activation of HER family receptors engages signalling pathways that ensure proliferation occurs

and barrier integrity is rapidly restored.

As well as these physical means of EGFR pathway control, several endogenous EGFR pathway antagonists

have been identified. LRIG1 is a plasma membrane protein expressed to varying levels within airway, skin

and intestinal epithelial cells that acts as an inhibitor of EGFR pathway-dependent proliferation [25–28].

Data suggests that LRIG1 acts in airways by recruiting a HER1:E-Cadherin tripartite complex upon cellular

confluency [28]. Whereas LRIG1 is membrane-bound, the HER1 antagonist MIG6 is a separate,

cytoplasmic protein that inhibits the tyrosine kinase domain of HER family receptors to prevent their

dimerisation and subsequent kinase activity [29].

Upon ligand binding and pathway activation, EGF receptors are rapidly internalised to prevent continuous

receptor activation. Given the aberrant effects of over-activation of the EGFR pathway, tight regulation of

receptor phosphorylation occurs under normal conditions [30]. HER1 autophosphorylation can be reversed

directly by Tyr-specific phosphatases that dephosphorylate the kinase domain, preventing further signalling.

Additionally, once receptors are activated, cells internalise them to dissociate the ligand source and receptor,

preventing continued signalling. The recruitment of adaptor proteins, such as growth factor receptor-bound

protein 2 (GRB2), facilitate clathrin-mediated endocytosis of the receptor and in turn recruit ubiquitin

ligases [31]. Ubiquitination targets the receptor for degradation via the lysosomal pathway but

deubiquitylating enzymes can intervene at this stage to prevent degradation and recycle the receptor to

the cell surface [32]. The fate of internalised EGF family receptors is also ligand-dependent; some ligands,
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FIGURE 1 A simplified view of the epidermal growth factor receptor (EGFR) signalling pathway in lung homeostasis and
disease. The HER family comprises four members, each of which is activated by one or more of the 13 identified members
of the epidermal growth factor (EGF) family of ligands (shown above each receptor). Receptor–ligand interactions lead to
autophosphorylation of the receptor intracellular domain and the recruitment of downstream signalling components.
Effectors of EGFR signalling include the MEK/ERK (MAPK kinase/extracellular signal-regulated kinase), PI3K
(phosphatidylinositol-3-kinase) and JAK/STAT (Janus kinase/signal transducer and activator of transcription)
pathways, whose combined activity regulates airway development and homeostasis. Healthy airways are lined by a
tightly regulated epithelial barrier comprised of basal, mucosecretory and ciliated cell populations. In chronic respiratory
disease, aberrant EGFR signalling can cause airway hyperproliferation (in red, left), increase mucus cell differentiation and
mucus production (red, centre) and promote subepithelial fibrosis and excessive collagen deposition (red, right). TGF:
transforming growth factor.
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such as EGF, remain tightly bound and receptors continue through the endosomal pathway and are

ultimately lysosomally degraded while others, such as transforming growth factor (TGF)-a, dissociate more

readily, favouring receptor recycling [33, 34].

EGFR signalling in lung development and homeostasis
Although normal airway HER1 expression is low and only transiently increased during repair [35], there

nonetheless exists a significant body of evidence indicating a fundamental role for EGFR signalling in lung

development and homeostasis. Specifically, mice lacking Erbb1 (human HER1) exhibit impaired lung

development, lung branching deficiencies from as early as E12.5, and invariably die in utero [36].

Conversely, constitutive Erbb1 pathway activation disrupts normal lung morphogenesis and promotes

phenotypes reminiscent of chronic lung disease [35, 37]. Mice that overexpress the Erbb1 (human HER1)

ligand TGF-a in their airways develop fibrosis, pleural thickening, abnormal vascular development and

pulmonary hypertension, a phenotype that can be ablated by cross breeding with Erbb1 mutant mice. These

studies have also shown that mice deficient in TGF-a are resistant to bleomycin-induced lung remodelling

[38]. Further, in the alveolar epithelium, EGF signalling via Erbb1 has emerged a key regulator of type II cell

maturation and mediator of acute lung injury responses [39, 40]. HER2 and HER3 are additionally known

to be expressed during human lung development [41] and HER4 signalling regulates epithelial proliferation

[42] and surfactant production [43, 44] in fetal lungs. Together, these results point to EGFR signalling as a

critical developmental pathway in lung epithelial cells.

Murine data regarding Erbb1 in lung development is supported by in vitro work on human airway cells that

suggests a key role for HER1 signalling in normal lung homeostasis. In human airway air–liquid interface

models, increasing the concentration of neurgulin-1 in cultures increases epithelial height [45] while

increasing trefoil factor family 3 (TFF3) concentration leads to HER1 pathway-dependent increase in the

proportion of epithelial cells adopting a ciliated phenotype [46]. The addition of EGF or other EGF family

ligands to these cultures also promotes squamous-like epithelial differentiation with decreased ciliated cell

differentiation and acquisition of an epithelial-to-mesenchymal transition phenotype [24]. These results

suggest that EGFR signalling is important for maintenance of normal human airway homeostasis.

EGFR signalling in lung fibrosis
The EGFR pathway has been implicated in lung fibrosis through studies in which transgenic mice that

constitutively express TGF-a in epithelial cells develop progressive lung fibrosis [35, 37, 47]. This occurs via

an EGFR pathway dependent paracrine loop between epithelial and fibroblast cells, resulting in excessive

collagen production and deposition. In this model, even transient increases in TGF-a expression disrupt
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FIGURE 2 Mechanisms of endogenous epidermal growth factor receptor (EGFR) signalling pathway regulation. During
homeostasis several endogenous mechanisms exist to modulate EGFR pathway activity. These include 1) ligand–receptor
choice and binding affinity, 2) EGFR homo- and heterodimerisation, 3) extracellular ligand release and receptor–ligand
segregation, 4) cytoplasmic and cell surface antagonist abundance, 5) rate of intracellular receptor recycling, and
6) downstream pathway choice causing differential gene expression. MEK/ERK: MAPK kinase/extracellular signal-regulated
kinase; PI3K: phosphatidylinositol-3-kinase; JAK/STAT: Janus kinase/signal transducer and activator of transcription.
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lung morphogenesis, arrest normal alveolar septation, and cause chronic lung disease [35]. Conversely, mice

deficient in TGF-a that lack normal EGFR signalling (wa-2 mutant mice) or that are treated with EGFR

pathway antagonists exhibit resistance to bleomycin-induced lung fibrosis [38]. It has also been shown that

the HER1 ligand amphiregulin and an intact EGFR pathway are required for TGF-b1 dependent pulmonary

fibrosis [48]. The administration of bleomycin to mice is an established lung fibrosis model. Administering

the tyrosine kinase inhibitor gefitinib with bleomycin attenuated these changes. There was evidence that the

bleomycin-induced phosphorylation of EGFR was inhibited by gefitinib [49]. These data suggest a novel,

under-appreciated clinical relevance of inhibiting EGFR signalling in regulating human fibrotic lung disease.

EGFR signalling in airway hypersecretory disease
Excessive mucus production and secretion is a pathological feature of a number of chronic respiratory

diseases, including asthma, COPD, and bronchiectasis. It is increasingly accepted that the EGFR signalling

pathway is a central regulator of both airway mucus production and secretion. Specifically, a significant

positive correlation exists between high airway EGFR immunoreactivity and excessive goblet cell

differentiation in asthmatic patient airways [50], and bronchial biopsies obtained from smokers with

excessive mucus production exhibit increased HER1 and HER3 expression [51]. Cystic fibrosis patients also

exhibit evidence of increased mucin expression, TGF-a abundance and EGFR signalling in their airways

[52]. Pseudomonas aeruginosa, a colonising bacterium, is associated with worsening outcomes in cystic

fibrosis patients and can trigger EGFR activation and subsequent MUC5AC expression in vitro. These effects

can be blocked by HER1 antagonism [53], suggesting that an EGFR-targeted therapy may be useful in future

therapies seeking to reduce mucin load in cystic fibrosis.

Airway inflammation, with release of the pro-inflammatory cytokine tumour necrosis factor (TNF)-a has

been shown to induce excessive HER1 signalling in airways [54], upregulate amphiregulin, and promote

TGF-a secretion from bronchial epithelial cells [55, 56]. These changes exert an autocrine effect on HER1

activity, leading to increased goblet cell differentiation and mucus secretion. Experimentally, this has been

shown by the ability of intratracheal TNF-a instillation to promote HER1 expression in rat airways [57].

Instillation of EGFR pathway ligands also causes expansion of goblet cell populations and increased mucin

production [58]. The pro-inflammatory cytokines that induce EGFR expression in diseased airways are

most likely derived from immune cells: CD4+ T-cells produce a Th2 pattern of cytokines, including

interleukin (IL)-4, IL-5 and IL-13 [59], that in turn stimulate airway epithelial cell proliferation through

autocrine production of TGF-a [60]. Separately, activated eosinophils grown in the presence of

inflammatory cytokines IL-3 and IL-5 can induce upregulation of TGF-a in bronchial epithelial cells,

leading to HER1 activation and increased mucin production [61]. Pro-inflammatory cytokine release also

occurs upon epithelial exposure to fine particulate matter, resulting in increased amphiregulin, TGF-a and

EGF ligand expression as well as mucus production [62]. Altogether, these data suggest that antagonists of

EGFR ligands, receptors, and/or downstream mediators may ameliorate excessive goblet cell differentiation

and mucus production in a wide variety of hypersecretory diseases.

EGFR signalling in lung cancer
The EGFR signalling pathway plays an important role in multiple lung cancers. Aberrant EGFR pathway

activation is found in essentially all head and neck cancer patients and conserved HER1 gene mutations

have been identified in subsets of both squamous and adenocarcinoma patients [63, 64]. Of these

mutations, approximately 90% of mutations are found in exons 18–21 of the HER1 kinase domain, with an

additional 5% represented by an in-frame deletion within exons 2–7 [9].

Given this clear importance of EGFR signalling in lung cancer, many groups have produced mouse models

that mimic abnormal human lung HER1 expression. Erbb1 (HER1) mouse models that exhibit human-

like adenocarcinoma development include doxycycline-inducible hEGFRL858R (CCSP-rtTA;Tet-O7-

hEGFRL858R), hEGFRDEL (CCSP-rtTA;Tet-O7-hEGFRDEL), and hEGFRVIII (CCSP-rtTA;TetO7-hEGFRVIII)

lines [65]. In each case, mutant mice treated with doxycycline develop multifocal tumours in the lung

parenchyma. Missense mutation (L858R) and deletion (DEL) lines treated with either small molecule

HER1/2 tyrosine kinase inhibitors (gefitinib, erlotinib or HKI-272) or monoclonal antibody therapies

(cetuximab) also exhibit complete regression of doxycycline-inducible tumours [66]. Separate animal

models in which either the membrane associated HER1 suppressor LRIG1 or the intracellular regulator

Mig6 are deleted also exhibit increased lung cancer susceptibility [28, 67–69]. These data are consistent with

those from human clinical specimens in which both LRIG1 and MIG6 are downregulated in squamous and

adenocarcinomas in conjunction with EGFR pathway activation [28]. Intriguingly, LRIG1 and MIG6

deletion models each also exhibit features of early preinvasive lung cancer, suggesting that EGFR family

antagonism may be clinically relevant in the treatment of early lung disease, even in the absence of identified

HER1/2 mutations [28, 70].
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Therapeutically targeting the EGFR pathway
To date the majority of clinical studies involving EGFR pathway inhibition have focused on treatments for

lung cancer where mutations in either HER1 or HER2 have been identified. There are at present two main

therapeutic approaches used to inhibit mutated EGFR pathway signalling: small molecule tyrosine kinase

inhibitors (TKIs) targeting intracellular EGFR signalling molecules and monoclonal antibody therapies

directed at blocking receptor–ligand binding (fig. 3).

Small molecule TKIs have been licensed for HER1 mutation positive lung cancer for a number of years, with

their unequivocal benefit shown in IPASS (the Iressa Pan-Asia Study) [71]. This phase III multicentre, pan-

Asian, open label study randomised hitherto untreated patients with advanced nonsmall cell lung cancer to

a first line TKI (gefitinib) versus conventional therapy consisting of carboplatin and paclitaxel. Patients

positive for HER1 mutations showed a significant objective response rate with a TKI treatment response of

71.2% versus 1.1% with conventional chemotherapy [72]. Monoclonal antibody therapies, including

cetuximab and trastuzumab, used to target HER1 and HER2 mutations in other diseases also showed

potential utility in lung cancers. Sadly, in a phase II clinical trial of patients with identified HER1 mutations,

these compounds have not proved clinically beneficial [73]. Additionally, the use of both TKIs and

monoclonal antibodies are also often limited due to the acquisition and development of tumour therapy

resistance [74]. Resistance to chemotherapeutic drugs is a key issue in lung cancer patient management and

recent studies have linked it, at least in part, to the existence of cancer stem-like cells. These subpopulations

of cells within the tumour possess stem cell-like features, are positive for CD133 and ALDH (aldehyde

dehydrogenase family) and have been reported to show greater tumorigenic potential and higher resistance

to chemotherapeutic/EGFR TKI drugs [75, 76]. Studies have also shown that Met amplification together

with sustained PI3K/AKT signalling pathway may confer TKI drug resistance in HER1/2 mutant tumours

[77]. For this reason, alternative strategies, including the development of second generation TKIs and dual

targeting of EGF receptors in conjunction with other EGFR pathway targets, are currently being investigated

at a preclinical and clinical level [78]. These studies involve targeting novel downstream PI3K, AKT, JAK/

STAT and mTOR mediators in conjunction with EGF receptor inhibition (some of which are shown in

fig. 3). Of note, mTOR inhibitors are currently approved for use in renal cell carcinoma [79], although their

efficacy in lung cancer has not been established.
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endogenous ligand engagement, thereby attenuating downstream pathway activation (cetuximab and trastuzumab).
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In addition to lung cancer, recent studies targeting interactions between TGF-a and HER1 in pulmonary

fibrosis have shown significant preclinical success. In transgenic mice that overexpress TGF-a and develop

spontaneous pulmonary fibrosis the use of the MEK inhibitor ARRY-142886 or the PI3K inhibitor PX-866

reduces pulmonary fibrosis progression and preserves physiological parameters [80, 81]. Administration of

the mTOR inhibitor rapamycin in this same model also inhibits progression of established pulmonary

fibrosis by limiting EGFR signalling pathway activation [82]. In a separate rat model of bleomycin-induced

fibrosis the rapamycin analogue SDZ RAD reduced lung collagen accumulation and lung weights, both of

which are classic features of lung fibrosis [83]. Clinically, the rapamycin analogue everolimus was assessed

in a double blind placebo controlled trial of 88 patients with biopsy proven idiopathic pulmonary fibrosis.

Disappointingly, almost half of the patients in the treatment arm of this study did not tolerate the trial

dosing regimen and exhibited a decline in lung function parameters for unknown reasons [84]. Further

clinical studies are therefore needed to assess the potential utility of targeting these and other AKT and JAK/

STAT inhibitors currently in development for other fibroproliferative disorders, such as ruxolitinib and

perifosine (fig. 3) [85, 86].

Given the significant evidence that the EGFR pathway regulates airway mucus cell hyperplasia and mucus

production, a number of preclinical studies have examined whether targeting this pathway might be useful

in treating asthma, COPD, cystic fibrosis and other mucus hypersecretory disorders. In an animal model of

mucus hypersecretion, blocking TGF-a using small molecule inhibitors prevented IL-13 dependent mucus

production [87]. Separately, small molecule and monoclonal antibody EGFR inhibitors can prevent mucin

upregulation in a number of preclinical models [53, 62, 88]. A clinical trial in which the EGFR TKI

BIBW2948 was administered to COPD patients with mucus hypersecretion has also been established.

This multicentre, double- blind, placebo-controlled trial, analysed safety and mucin-related outcomes.

Unfortunately, in the 48 patients involved, mucin stores and gene expression were not significantly reduced

in the treatment arm and there was additionally a dose-related increase in adverse events, including liver

enzyme elevation and reduction in forced expiratory volume in 1 s [89].

Sadly, the effects of inhibiting the EGFR pathway appear to not be without consequences. It has been noted in

lung cancer patients receiving TKIs there is a 1–5% incidence of interstitial lung disease depending on

population group [90, 91]. This TKI-dependent interstitial lung disease may be associated with the co-

administration of radio- or chemotherapy [92], severe acute interstitial lung disease [92], older age, smoking

and poor lung performance status [93]. These data suggest that improvements to EGFR pathway target

identification, compound optimisation and patient selection remain warranted for chronic lung disease.

Summary and future directions
To date, antagonism of the EGFR pathway activity has only been shown to be clinically beneficial in treating

lung cancer. This is most likely due to the significant complexity of the EGFR signalling pathway and

demonstrates that further studies are needed to understand the pharmacokinetics, safety, and potential

clinical efficacy of existing and in-development compounds for treating other chronic respiratory diseases

with or without identified EGFR pathway mutations but with clear EGFR pathway hyperactivation (fig. 3).

Despite this, the preclinical evidence that abnormal EGFR signalling drives respiratory pathology in a wide

range of lung diseases in considerable. To overcome current challenges in targeting the EGFR pathway for

therapeutic development, a comprehensive understanding of EGFR signalling coupled with careful

compound selection and molecular targeting is needed. Future targets for therapy in chronic respiratory

diseases where EGFR is hyperactivated are likely to include inhibition of ligand binding affinity, receptor

homo- and/or heterodimerisation, pharmacological manipulation of ligand release and activation by

metalloproteinase or other enzymes, restoration of physical segregation between EGFR ligands and

receptors, enhanced avidity of intracellular and cell-surface antagonists for EGFR receptors, and a

restriction of choice of downstream EGFR signalling pathways (fig. 2). Regardless of target, a key challenge

for effectively antagonising EGFR signalling will be to minimise deleterious effects while maintaining

normal respiratory functions.
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