European Respiratory Society
Annual Congress 2013

Abstract Number: 5468
Publication Number: P515

Abstract Group: 10.2. Tuberculosis
Keyword 1: Tuberculosis - mechanism **Keyword 2:** Bronchoalveolar lavage **Keyword 3:** Monocyte / Macrophage

Title: Neutrophils increase M. tuberculosis growth in a human lung model

Dr. Barbara 31637 Kalsdorf bkalsdorf@fz-borstel.de MD 1,2, Dr. David M. 31638 Lowe d.lowe@imperial.ac.uk MD 2,3, Mrs. Kathryn 31639 Wood kathryn.wood@uct.ac.za 2, Dr. Rod 31640 Dawson rodney.dawson@uct.ac.za MD 4, Prof. Christoph 31650 Lange clange@fz-borstel.de MD 1 and Prof. Robert J. 31641 Wilkinson rj.wilkinson@imperial.ac.uk MD 2,3,4,5. 1 Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany, 23845 ; 2 Clinical Infectious Diseases Research Initiative, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa, 7925 ; 3 Division of Medicine, Imperial College London, London, United Kingdom, W2 1PG ; 4 Department of Medicine, University of Cape Town, Cape Town, South Africa, 7925 and 5 Mycobacterial Research, National Institute for Medical Research, London, United Kingdom, NW7 1AA .

Body: Introduction: In respect to tuberculosis granuloma formation the influence of neutrophils has been neglected. Limited data report elevated neutrophil count in peripheral blood in humans, and murine models have shown a correlation between tissue destruction and increased recruitment of neutrophils to the site of disease. Material and Methods: Following informed consent, peripheral blood was drawn and a bronchoscopy was performed on 12 HIV-seronegative and 10 HIV-positive adults (in all cases active tuberculosis was excluded) from a high tuberculosis-incidence setting of Cape Town, South Africa. To investigate the effect of neutrophils on mycobacterial growth, alveolar macrophages were cocultured with different numbers of autologous neutrophils, infected with M. tuberculosis and bacterial load was determined as colony forming unit (CFU) after 96 hours culture. Results: Addition of neutrophils to an ex vivo human alveolar macrophage model of M. tuberculosis infection increased M. tuberculosis growth: Alveolar macrophages without neutrophils contained a median of 2775 cfu/100 µL, addition of neutrophils at 1:1 non-significantly increased the CFU to 4500 cfu/100 µL, and a ratio of 1 alveolar macrophage:10 neutrophils increased the growth to 20693 cfu/100 µL (7.5 fold, p < 0.0001). Stratifying by HIV-status or M. tuberculosis sensitization revealed no difference. Conclusion: These preliminary data reveal that the addition of neutrophils in excess to alveolar macrophages enhances growth of M. tuberculosis. Abrogating the immunopathological neutrophil response might have therapeutic application in humans with severe tuberculosis.