European Respiratory Society Annual Congress 2013 **Abstract Number: 5186** **Publication Number: P5148** **Abstract Group:** 4.1. Clinical respiratory physiology, exercise and functional imaging **Keyword 1:** Exercise **Keyword 2:** Physiology **Keyword 3:** Pulmonary hypertension **Title:** Recovery from dynamic exercise dissociates ventilatory from pulmonary gas exchange responses in patients with chronic thromboembolic pulmonary hypertension Dr. Roberta 32924 Ramos robertapulcheri@gmail.com MD ¹, Dr. Eloara 32925 Ferreira eloaravmf@yahoo.com.br MD ¹, Dr. Arakaki-Ota 32926 Jaquelina jaqueota@gmail.com MD ¹, Prof. Dr Luiz 32927 Nery lednery@uol.com.br MD ¹, Prof. Dr J. Alberto 32928 Neder nederalb@gmail.com MD ^{1,2} and Dr. Erika 32929 Treptow erikatpw@hotmail.com ¹. ¹ Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil and ² Department of Medicine, Queen's University, Kingston, ON, Canada . Body: Background: Exercise is characterized by an excessive ventilatory (V'E) response to metabolic demand (i.e., CO₂ output, V'CO₂) in chronic thromboembolic pulmonary hypertension (CTEPH). We investigated whether this would also be the case when the neural ventilatory drive (by "feed-forward" mechanisms) is likely to be reduced, e.g, immediately after exercise. Methods: Forty-three patients with CTEPH (50 \pm 13 yrs, cardiac index= 2.0 \pm 0.5 L/kg/min⁻¹; PVR= 1034 \pm 402 dynes.s.cm⁻²) and 21 sedentary controls performed a ramp-incremental exercise test followed by unloaded recovery. Results: In patients, V'CO₂ (and O₂ uptake) kinetics were significantly delayed compared to V'E (1st min decrease in % peak values= 13 ± 7 vs $19 \pm 1\%$; 2^{nd} min= 26 ± 13 vs $33 \pm 12\%$; 3^{rd} min= 46 ± 12 vs 53 ± 10 %; 4^{th} min= 54 ± 13 vs 59 \pm 13%; 5th min= 61 \pm 11 vs 65 \pm 4%, p<0.05). This sharply contrasted with results found in the controls in whom V'E kinetics were consistenly slower than V'CO₂ throughout the recovery (p<0.05). Consequently, V'E/V'CO2 ratio decreased (and end-tidal CO2 (PFTCO2) increased) as exercise ceased in 41/43 (95%) patients with opposite patterns (i.e, V'E/V'CO2 increase and PFTCO2 decrease) been found in all controls. Conclusion: Exercise recovery dissociates ventilatory to pulmonary gas exchange responses in patients with CTEPH. Although this might be related to lower post-exercise metabolic drive due to less lactacidosis in patients than controls, it might also indicate that enhanced neural drive - which was suddently reduced at exercise cessation- contributes to patients' excessive exercise V'E.