Abstract Group: 4.1. Clinical respiratory physiology, exercise and functional imaging
Keyword 1: COPD - diagnosis Keyword 2: Acute respiratory failure Keyword 3: Chronic disease

Title: Value of proton magnetic resonance spectroscopy of brain to study the cerebral metabolic abnormalities in COPD: Initial experience

Dr. Rana 3318 El-Helbawy ranaelhelbawy@yahoo.com MD , Dr. Rabab 3319 Yasin rababyasin_77@hotmail.com MD and Dr. Mohammad 3320 Shawky m.shawky76@yahoo.com MD . ¹ Chest Department, Menoufiya University Hospital, Menoufiya, Shebean Elkoam, Egypt ; ² Radiology Department, Menoufiya University Hospital, Menoufiya, Shebean Elkoam, Egypt and ³ Radiology Department, Menoufiya University Hospital, Menoufiya, Shebean Elkoam, Egypt .

Body: Background: Proton magnetic resonance spectroscopy (1H MRS) is technique that detects metabolic changes of the brain in chronic obstructive pulmonary disease (COPD). Objective: To study the cerebral metabolic changes in (COPD) patients using (1H MRS). Methods: This study was carried out on 20 COPD patients and 20 healthy controls. Pulmonary function, arterial blood gases, and 1H MRS of brain had undergone. The metabolic ratios of N-acetyl aspartate to creatine (NAA/Cr) and choline to creatine (Cho/Cr) were calculated by single voxel technique. Results: in COPD patients the mean value of NAA/Cr and Cho/Cr in parieto-temporal area were (1.82± 0.35) and (0.99± 0.21), respectively, while in occipital area were (1.59± 0.31) and (0.81± 0.26), respectively. Compared with healthy control subjects, the mean values of Cho/Cr in COPD patients were lower in parieto-temporal (0.99±0.21 vs. 1.10±0.31; p=0.22) and occipital areas (0.81± 0.26 vs 0.88± 0.21; p=0.37). While, the mean values of NAA/Cr in COPD patients were higher in both parieto-temporal (1.82±0.35 vs 1.68±0.22; p=0.14) and occipital areas (1.59± 0.31 vs. 1.39± 0.39; p=0.08) of the brain. There was positive correlation between the concentration of brain metabolites and PCO2 in COPD patients. Conclusions: 1H MRS is noninvasive technique that detects cerebral metabolic changes in COPD patients.