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ABSTRACT: Cigarette smoking contributes to lung remodelling in chronic obstructive pulmonary

disease (COPD). As part of this remodelling, peribronchiolar fibrosis is observed in the small

airways of COPD patients and contributes to airway obstruction. Fibroblast-to-myofibroblast

transition is a key step in peribronchiolar fibrosis formation.

This in vitro study examined the effect of cigarette smoke on bronchial fibroblast-to-

myofibroblast transition, and whether aclidinium bromide inhibits this process. Human bronchial

fibroblasts were incubated with aclidinium bromide (10-9–10-7 M) and exposed to cigarette smoke

extract. Collagen type I and a-smooth muscle actin (a-SMA) expression were measured by real-

time PCR and Western blotting, as myofibroblast markers. Intracellular reactive oxygen species,

cyclic AMP (cAMP), extracellular signal-regulated kinase (ERK)1/2 and choline acetyltransferase

were measured as intracellular signalling mediators.

Cigarette smoke-induced collagen type I and a-SMA was mediated by the production of reactive

oxygen species, the depletion of intracellular cAMP and the increase of ERK1/2 phosphorylation

and choline acetyltransferase. These effects could be reversed by treatment with the antic-

holinergic aclidinium bromide, by silencing the mRNA of muscarinic receptors M1, M2 or M3, or

by the depletion of extracellular acetylcholine by treatment with acetylcholinesterase.

A non-neuronal cholinergic system is implicated in cigarette smoke-induced bronchial

fibroblast-to-myofibroblast transition, which is inhibited by aclidinium bromide.

KEYWORDS: Anticholinergic, chronic obstructive pulmonary disease, cigarette smoke, non-

neuronal cholinergic system

C
hronic obstructive pulmonary disease
(COPD) is characterised by airflow limi-
tation that is progressive and not fully

reversible. Cigarette smoking is the main risk factor
for COPD and contributes to structural changes in
airways during COPD progression [1]. Structural
changes in COPD patients are characterised by loss
of alveolar wall (emphysema), vascular remodel-
ling with pulmonary hypertension, mucus hyper-
secretion or peribronchiolar fibrosis [1]. As part of
fibrotic alterations in COPD, structural changes are
seen primarily in small airways. The severity of the
disease appears to correlate with thickening of the
walls of small airways caused by fibrosis and
infiltration of inflammatory cells, which contributes
to airflow obstruction [2]. Accumulation and
persistence of myofibroblasts is believed to con-
tribute to the development of small airway fibrosis.
In this respect, under chronic inflammatory condi-
tions, resident lung fibroblasts are activated and
transformed into a more contractile, proliferative

and secretory-active myofibroblast phenotype,
characterised by increased expression of extracel-
lular matrix components and a-smooth muscle
actin (a-SMA), which contributes to the increase of
lung remodelling progression and airway bronch-
oconstrictor responsiveness [3].

Parasympathetic activity is increased in the airways
of COPD patients and is the basis for the use of
anti-cholinergic therapy [4]. Anti-cholinergics con-
stitute a particularly important bronchodilator
therapy in COPD and certain forms of asthma [5].
Furthermore, in animal models, anticholinergics
have shown potential anti-inflammatory and anti-
remodelling effects [6], which may be of addi-
tional value to their classical bronchodilator effects.

Recently, it has been proposed that acetylcholine
in the airways may be released by non-neuronal
cell types, such as airway epithelial cells and
lung fibroblasts. Therefore, a dysfunction of a
non-neuronal cholinergic system may contribute
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to the pathophysiology of asthma and COPD [7]. It has been
shown that anticholinergic treatment inhibits cigarette smoke-
induced mucin hypersecretion in human bronchial epithelial
cells [8], as well as cigarette smoke-induced lung fibroblast
proliferation [9]. Furthermore, choline acetyltransferase (ChAT),
the intracellular enzyme responsible for acetylcholine pro-
duction, is upregulated in both lung fibroblasts from COPD
patients and fibroblasts stimulated with cigarette smoke [9].
However, no data exist concerning the role of cigarette
smoke on fibroblast to myofibroblast transition, as well as
the potential inhibitory effect of anticholinergics.

Aclidinium bromide is a novel, inhaled, long-acting muscarinic
antagonist compound with low systemic activity that has
completed phase III clinical development for COPD treatment
[10]. In preclinical studies, aclidinium bromide demonstrated
potent muscarinic-antagonist activity, comparable to that of
ipratropium bromide and tiotropium bromide, and a long
duration of action [11]. In clinical trials, aclidinium bromide
has provided sustained bronchodilation, similar to that
observed with tiotropium bromide, a good safety profile and
low incidence of anticholinergic adverse events [10].

In this study, we investigated the role of aclidinium bromide
on the increase of the myofibroblast markers collagen type I
and a-SMA elicited by chronic cigarette smoke exposure in
human bronchial fibroblasts, as well as the intracellular
pathways involved in this process.

METHODS
See the online supplementary material for further details of the
methods used.

Isolation and cultivation of human fibroblasts
Human bronchial fibroblasts were obtained from patients
undergoing surgery for lung carcinoma who gave informed
consent, as previously described [12]. Cultivation and char-
acterization of fibroblasts were performed as described else-
where [12]. The protocol for obtaining human tissue was
approved by the local ethical review board for human studies
(General Hospital of Valencia, Valencia, Spain). See the online
supplementary material for details.

Preparation of cigarette smoke extract and incubations
Cigarette smoke extract (CSE) solutions were prepared as
previously described [13]. Briefly, the smoke of a research
cigarette (2R4F; Tobacco Health Research, University of
Kentucky, Lexington, KY, USA) was bubbled into a flask
containing 25 mL pre-warmed (37uC) Dulbecco’s Modified
Eagle’s Medium. The resulting solution was defined as CSE at
100%. CSE at 10% reportedly corresponds to the exposure
associated with smoking approximately 1–2 packs per day
[14]. Before stimulation, subconfluent cell monolayers were
deprived of serum for 24 h. Human bronchial fibroblasts were
stimulated with CSE (0–10%) for different periods of time (0–
72 h), replacing the culture medium and stimulus every 24 h.
Different drug modulators were added 30 min before the
stimulus. See the online supplementary material for details.

Real-time RT-PCR
Total RNA was isolated from cultured human bronchial
fibroblasts by using TriPure1 (Roche, Indianapolis, IN, USA),

and reverse-transcribed and amplified with specific primers.
Relative quantification of these different transcripts was
determined with the 2-DDCt method using glyceraldehyde
phosphate dehydrogenase as an endogenous control (Applied
Biosystems, Foster City, CA, USA) and normalised to the control
group. See the online supplementary material for details.

Transfection of small interfering RNAs
Small interfering RNA (siRNA) for M1, M2 and M3 receptors and
the scrambled siRNA control were purchased from Ambion
(Cambridge, UK). The transfection reagent used was Lipofec-
tamine 2000 (Invitrogen, Paisley, UK) at a final concentration of
2 mL?mL-1. See the online supplementary material for details.

Western blotting
Western blot analysis was used to detect changes in collagen
type I (138 kDa), a-SMA, phosphorylate extracellular signal-
regulated kinase (ERK)1/2 (42-44 kDa), M1 (52 kDa), M2
(70 kDa), M3 (75 kDa), p67phox (67 kDa), NADPH oxidase
(NOX)4 (67 kDa) and ChAT (65 kDa) in bronchial fibroblast
lysates. See the online supplementary materials for details of
Western blot analyses and antibodies used.

Dichlorodihydrofluorescein fluorescence measurement of
reactive oxygen species
29,79-dichlorodihydrofluorescein diacetate (H2DCF-DA; Molecular
Probes, Nottingham UK) was used to monitor the intracellular
reactive oxygen species (ROS) in bronchial fibroblasts. See the
online supplementary material for details.

Cyclic AMP assay
Human lung fibroblasts were cultured in 96-well plates to
,95% confluence. Following different treatments, cells were
lysed and intracellular cyclic AMP (cAMP) content was de-
termined with the cAMP Biotrak enzyme immunoassay accord-
ing to manufacturer’s instructions (Amersham, Cambridge, UK).
Results were expressed as femtomoles per well.

Analysis of results
Data presented as mean¡SEM of n experiments. Statistical
analysis of data was performed by ANOVA followed by the
Bonferroni test (GraphPad Software Inc., San Diego, CA, USA).
Significance was accepted when p-values were ,0.05.

RESULTS
Aclidinium bromide attenuates CSE-induced myofibroblast
markers in human bronchial fibroblast cultures
CSE, at 2.5% concentration, upregulated collagen type I and a-
SMA in a time-dependent manner, reaching peak values
following 48 h of CSE 2.5% exposure (fig. 1a and b).
Furthermore, CSE dose-dependently increased collagen type I
and a-SMA mRNA and protein expression, reaching statistical
significance at 2.5% concentration following 48 h of exposure
(fig. 1c–f). Thus, we selected this CSE concentration to evaluate
myofibroblast marker expression in future experiments.

In other experiments, aclidinium bromide was added 30 min
before CSE 2.5% and further incubated for 48 h. Aclidinium
bromide dose-dependently reduced the CSE-induced collagen
type I and a-SMA mRNA and protein expression, reaching a
maximal inhibitory value at 10-7 M (fig. 2a–c). Similar results
were observed for atropine, reaching significant inhibition of

J. MILARA ET AL. CIGARETTE SMOKE-INDUCED LUNG DISEASE

c
EUROPEAN RESPIRATORY JOURNAL VOLUME 41 NUMBER 6 1265



both myofibroblast markers at 1 mM, suggesting the participa-
tion of a cholinergic pathway in this process (fig. 2d–f). Neither
aclidinium nor atropine by themselves showed any effect on
myofibroblast markers (figs S1 and S2).

Aclidinium bromide reduces intracellular ROS elevated by
CSE in human bronchial fibroblasts
In our experiments on human primary lung fibroblasts, CSE
(2.5–10%) dose-dependently increased intracellular ROS gen-
eration, reaching a significant value after 2 h of stimulation
that was sustained for 24 h (fig. 3a). Pretreatment of bronchial
fibroblasts with aclidinium bromide dose-dependently
reduced the CSE-induced ROS by nearly 50% at 10-7 M after
24 h of CSE 2.5% stimulation (fig. 3b–e). In parallel experi-
ments, quenching of ROS by apocynin (100 mM) or N-acetyl-L-
cysteine (NAC) (1 mM), as well as increasing cAMP with its
analogue dibutyryl-cAMP (dbcAMP), suppressed CSE 2.5%-
triggered intracellular ROS production (fig. 3e).

The NADPH oxidase complex is comprised of several cytosolic
and plasma membrane subunits [15]. Among the subunits
analysed, we found that the cytosolic subunit p67phox and the
plasma membrane subunit NOX4 were the most highly
expressed in bronchial fibroblasts under basal conditions
(fig. 4a). Following 24-h exposure, CSE 2.5% upregulated both
mRNA transcripts and protein expression of p67phox and
NOX4, which were dose-dependently reverted to near control
values by exposure to aclidinium bromide 10-7 M (fig. 4b–d).

CSE activation of non-neuronal cholinergic system is
inhibited by aclidinium bromide
Previous reports have indicated that CSE activates a non-
neuronal cholinergic system in lung fibroblasts, but the mechan-
ism remains unclear. Since ChAT is the intracellular enzyme
responsible for acetylcholine synthesis, we next explored the
effect of CSE on ChAT expression. In this regard, CSE 2.5%
increased ChAT expression, which was dose-dependently
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Human lung fibroblasts were stimulated with CSE a, b) at the indicated times or c–f) for 48 h at the indicated concentrations. a–d) After incubation, the RNA was extracted and

subjected to RT-PCR with collagen type I- and a-SMA-specific primers and probes. e, f) After incubation, total protein was extracted and Western blots were performed with

specific antibodies for collagen type I and a-SMA. e, f) Data represent densitometries of three different Western blots. Each bar represents the mean¡SEM of a–d) four or e, f)

three independent experiments. a–f) One-way repeated-measures ANOVA p,0.001. *: p,0.05 with post hoc Bonferroni test compared with solvent controls.
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inhibited by aclidinium bromide and by the antioxidants

apocynin 100 mM and NAC 1 mM (fig. 5a).

Intracellular levels of cAMP and phosphorylation of ERK1/2 have

been related to the activation of human lung fibroblasts [12, 16]. In
this work, we observed that CSE 2.5% reduced intracellular cAMP

levels and increased the ERK1/2 phosphorylation following 24 h
of exposure (fig. 5b–d). Aclidinium bromide pretreatment dose-
dependently reduced the cAMP downregulation as well as
reducing the increase of ERK1/2 phosphorylation (fig. 5b and c).
Furthermore, the antioxidant treatment with apocynin 100 mM or
NAC 1 mM also reversed the CSE-induced cAMP downregulation
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and ERK1/2 phosphorylation (fig. 5b and d). Since CSE may
activate a non-neuronal cholinergic system, we added the enzyme
acetylcholinesterase (AChE) (10 U?mL+1) to remove any extra-
cellular acetylcholine during the 24-h period of CSE 2.5%
stimulation. AChE partially reversed cAMP downregulation and
ERK1/2 phosphorylation induced by CSE (fig. 5b and d).

The antioxidants NAC 1 mM and apocynin 100 mM, as well as
the cAMP analogue dbcAMP and the ERK1/2 inhibitor
PD98059 10 mM, partially suppressed the CSE-induced col-
lagen type I and a-SMA mRNA and protein expression (fig. 6a
and b). Moreover, both aclidinium bromide 10-7 M and AChE
10 U?mL-1 were also able to suppress the CSE-induced
collagen type I and a-SMA mRNA and protein expression in
human bronchial fibroblasts, which implicates a non-neuronal
cholinergic system in the upregulation of myofibroblast
markers (fig. 6a and b). To further study the role of this non-
neuronal cholinergic system in the myofibroblast transforma-
tion, lung fibroblasts were incubated with the inhibitor of
choline uptake transporter hemicholinium-3 at 50 mM or with
the AChE inhibitor neostigmine 10 mM before CSE 2.5%
exposure. Hemicholinium-3 significantly inhibited the CSE-
induced collagen type I and a-SMA mRNA and protein
expression, while neostigmine significantly increased the
CSE-induced collagen type I and a-SMA mRNA and protein
expression (fig. 6c and d). In the absence of CSE, the different
drugs assayed did not show any effect on mRNA or protein
expression of collagen type I and a-SMA (figs S3 and S4).

CSE upregulation of myofibroblast markers is partially
mediated by M1, M2 and M3 receptors
Human bronchial fibroblasts transfected with siRNA for M1,
M2 or M3 selectively suppressed specific muscarinic receptors
without affecting other muscarinic receptors (fig. 7a and b). In
this line, siRNA for all three muscarinic receptors showed
suppression of CSE-induced myofibroblast markers collagen
type I and a-SMA (fig. 7c), indicating that all three muscarinic
receptors may be involved in mediating the induction of the
myofibroblast markers.

DISCUSSION
The main and novel results of this study are that: 1) CSE
increased the myofibroblast markers collagen type I and a-SMA
in human bronchial fibroblast through a mechanism mediated
by increase of intracellular ROS, depletion of cAMP and
phosphorylation of ERK1/2; 2) CSE activated a non-neuronal
cholinergic system by means of overexpression of ChAT,
mediating increase of myofibroblast markers; and 3) the
anticholinergic aclidinium bromide was able to attenuate the
CSE-induced myofibroblast markers through inhibition of ROS
generation, cAMP depletion, ERK1/2 phosphorylation and
ChAT overexpression induced by CSE. These new findings
provide in vitro evidence of the antiremodelling effect of
aclidinium bromide on human bronchial fibroblasts in those
cigarette smoke exposure situations that may contribute to the
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amelioration of the peribronchiolar fibrosis observed in smokers
with COPD.

It is known that airflow limitation in COPD patients occurs in

distal airways considered as noncartilaginous conducting

airways with an internal diameter ,2 mm. In this work, we

carefully dissected small bronchi of ,2 mm to obtain bronchial

fibroblasts, which may represent the place where peribronch-

iolar fibrosis occurs [17]. Bronchiolar fibroblast transformation

into myofibroblasts is considered a key step in the process of

increasing the thickness of the small airways, reducing airways

radius and enhancing airflow limitation. Myofibroblasts share
phenotypic characteristics with fibroblasts and airway smooth

muscle cells. In this regard, myofibroblasts are characterised
by the secretion of extracellular matrix components (e.g.
collagen type I), a characteristic that is shared with fibroblasts
but not with smooth muscle cells, and by formation of
contractile apparatus (e.g. a-SMA), a characteristic that is
shared with airway smooth muscle cells but not with
fibroblasts [3]. Therefore, we selected both of these molecular
markers to analyse the myofibroblast-like phenotype. Several
growth factors and pro-inflammatory mediators, such as
transforming growth factor (TGF)-b1, interleukin-13 and con-
nective tissue growth factor, have been described as inducers of
myofibroblast transition [18]; however, no data were avail-
able on cigarette smoke, the main risk factor for COPD.
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In this work, we prepared CSE as we and others have described
previously [13, 14], which approximately corresponds to
exposures associated with smoking slightly fewer than
0.5 packs per day to slightly fewer than 2 packs per day of
cigarettes for CSE 2.5% and 10%, respectively. Currently, several
in vitro studies have been focused on effect of CSE on lung
fibroblasts; however, no data are available on effect of CSE on
bronchial fibroblast to myofibroblast transition. In this work, we
observed that CSE promoted myofibroblast marker overexpres-
sion, which is compatible with the myofibroblast-like phenotype
[3]. Furthermore, the CSE-induced expression of myofibroblast
markers was mediated by intracellular ROS production, which
was significantly increased after 2 h of exposure and persisted
until at least 24 h. The ROS increase preceded the collagen type I
and a-SMA overexpression (after 48 h), suggesting a role of
intracellular ROS as second messenger. A similar time-response
of ROS production has previously been reported in human
primary lung fibroblasts [19]. Intracellular ROS production in
response to CSE is mediated by direct activation of the NADPH
oxidase complex [20]. The NADPH oxidase complex is
comprised several cytosolic and plasma membrane units, which
vary depending on the cell type. Thus, in human lung
fibroblasts, the NADPH oxidase components p47phox, p67phox,
p22phox and NOX4 have been observed [21]. In this work, we
found that the NADPH oxidase subunits p67phox and NOX4
were the most highly expressed in bronchial fibroblasts. The
cytosolic p67phox subunit is mobilised under certain conditions
to activate the plasma membrane plasmatic subunits NOX1,
NOX2 or NOX3 to produce superoxide and/or hydrogen
peroxide. In contrast, the plasma membrane unit NOX4 does
not require interaction and activation by cytosolic regulatory
subunits, so its activation is directly related to its expression
[15]. In this regard, we found that CSE induced the upregulation
of both p67phox and NOX4 after 24 h of stimulation, which was
in accordance with the increase of intracellular ROS.

Recent reports have related expression of NOX4 as a key factor
of fibroblast progression and fibroblast-to-myofibroblast

transition [22]. Therefore, a treatment diminishing NOX4
and, in turn, intracellular ROS, may prevent myofibroblast
transition. We found that 24-h exposure to either the
antioxidant NAC or the NADPH oxidase inhibitor apocynin
inhibited the CSE-induced p67phox and NOX4 upregulation.
These antioxidant modulators were also able to reduce
myofibroblast markers induced by CSE, establishing a link
between oxidative stress and myofibroblast transition. The
anticholinergic aclidinium bromide attenuated myofibroblast
markers induced by CSE and this action was mediated in part
by the inhibition of the p67phox and NOX4 expression, as well
as by the consequent reduction of intracellular ROS generated
by CSE. These results suggest that CSE activates a non-
neuronal cholinergic system. Previous reports have suggested
that cigarette smoke may activate a non-neuronal cholinergic
system in different cell types, including airways and human
lung fibroblasts. For example, we have recently shown that
CSE promotes synthesis and release of the mucin MUC5AC in
differentiated bronchial epithelial cells by a mechanism
mediated by release of acetylcholine, and can be inhibited by
aclidinium bromide [8]. Furthermore, human lung fibroblasts
from COPD patients have shown an increase of muscarinic
receptors, as well as ChAT expression, an effect that was
mimicked in healthy lung fibroblasts after CSE exposure [9]. In
our experiments, AChE prevented the CSE-induced expression
of myofibroblast markers, which is consistent with the
presence of a non-neuronal cholinergic system. Other evidence
to support the activation of a non-neuronal cholinergic system
by cigarette smoke includes the upregulation of ChAT, the
intracellular enzyme responsible of acetylcholine synthesis. We
observed that CSE upregulated ChAT expression, which was
prevented by the antioxidants NAC and apocynin, as well as
by aclidinium bromide, suggesting the participation of
intracellular ROS. Further evidence of the participation of
non-neuronal cholinergic system was supported by the
inhibition of myofibroblast transition blocking choline uptake
with hemicholinium and increasing myofibroblast markers
inhibiting AChE with neostigmine.
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Nowadays, it is believed that cigarette smoke contains .6,000
compounds and, possibly, this list will grow in line with the
new analytical techniques available [23]. Taking into account
this assertion, we know that CSE has the advantage of
containing all of the compounds inhaled by smokers.
However, due to the very complexity of CSE, it is difficult
to identify the specific agent mediating a precise effect
because of differences found for particular concentrations
and durations of exposure of a given agent of CSE. To that
end, one can perform a dose–response and time-course
analysis and make some crude calculations to suggest that
exposure mimics what might happen in vivo. Thus, for
example, low concentrations of CSE (,5%) have shown
proliferative effects on lung fibroblasts [24–26], while higher
(.10%) concentrations showed inhibitory effects on lung
fibroblast proliferation [27], thus indicating that among the
,6,000 substance of cigarette smoke, there are some prolif-
erative and other anti-proliferative compounds that may act
depending on their final balance.

In the present work, we have used 2.5% CSE, which is in
agreement with the low doses of CSE demonstrating prolifera-
tive effects in previous studies [24–26], which support fibroblast
activation in the process of myofibroblast transition [28].

Preliminary data from our laboratory indicated that CSE at
2.5% concentration had a slight increase of fibroblast prolifera-
tion after 48 h of exposure (based on a bromodeoxyuridine
incorporation assay; data not shown). However, this increase
was not enough to perform inhibitory experiments with
aclidinium bromide. This was the main reason to discard
these experiments, since the well-established myofibroblast
markers collagen type I and a-SMA are more reliable in
mechanistic studies [3].

However, even if one could calculate exposure, experiments
performed with CSE cannot mimic all of the components of the
microenvironment that exist in living systems (e.g. cell–cell
interactions). Thus, despite limitations, results from these
studies allow determination of the capacity of CSE to influence
cellular functions while eliminating other variables.

Intracellular cAMP is a second messenger that mediates a high
number of anti-inflammatory processes. In addition to its anti-
inflammatory actions, cAMP also controls the inhibition of
fibroblast activation, as well as the myofibroblast transition [29].
Thus, a decrease of the levels of cAMP could promote
fibroblast to myofibroblast transition. This is evidenced by
TGF-b1, which increases the expression and activity of
phosphodiesterases, the enzymes that degrade cAMP, pro-
moting myofibroblast transition [30]. In the case of cigarette
smoke, it has been shown that hydrogen peroxide, a
component of tobacco smoke, swiftly elevates the activity of
phosphodiesterase 4D3 attributed to phosphoinositide 3-
kinase and ERK-dependent phosphorylation [31]. In this
respect, we have previously observed that CSE reduces
intracellular cAMP levels in human differentiated bronchial
epithelial cells by means of phosphodiesterase 4B upregula-
tion (data not shown). In this work, we observed that CSE
decreases intracellular levels of cAMP and that this effect was
partially reversed by the antioxidant NAC and aclidinium
bromide, suggesting a role of intracellular ROS. Furthermore,

AChE also attenuated the CSE-reduced cAMP, which indi-
cates the involvement of the non-neuronal cholinergic system.
This may be explained by the fact that the main muscarinic
receptor expressed on lung fibroblasts is M2 [32], which is
coupled to Gi protein, so stimulation of M2 by means of a non-
neuronal cholinergic system could also promote the inhibition
of adenylate cyclase/cAMP pathway and, therefore, myofi-
broblast transition.

In line with our results, recently, it has been found that
prostaglandin (PG)E2, as a potent cAMP enhancer, may inhibit
the activation of fibroblasts and their transformation into
myofibroblasts [33, 34]. Thus, we cannot discount that one of
the mechanisms of aclidinium bromide mediating the increase
of cAMP and, consequently, the inhibition of myofibroblast
transition could be the increase of PGE2 release.

Another pathway we investigated was ERK1/2 signalling.
Previous studies have shown that ERK1/2 participates in
fibroblast to myofibroblast transition [35] and that CSE directly
phosphorylates ERK1/2 [9]. Thus, CSE-induced myofibroblast
transition could be mediated in part by ERK1/2. In this work,
we observed that CSE induced the phosphorylation of ERK1/2,
which was reduced by aclidinium bromide and by the
antioxidant treatment. Moreover, AChE also attenuates the
CSE-induced ERK1/2 phosphorylation, suggesting that the
activation of muscarinic receptors is also implicated. Previous
results support the notion that muscarinic receptor activation
increases collagen expression in human lung fibroblasts by
means of ERK1/2 activation [12]. Therefore, a non-neuronal
cholinergic system may also be participating in the process of
CSE-induced ERK1/2 phosphorylation. Thus, the role of ERK1/2
in the CSE-induced myofibroblast markers was confirmed by the
inhibitory effect of the ERK1/2 antagonist PD98059.

Based on these results, we may conclude that CSE activates
muscarinic receptors in human bronchial fibroblasts by a non-
neuronal cholinergic system, and that this mechanism is
involved in the upregulation of the myofibroblasts markers.
However, which isoform of muscarinic receptor plays a
significant role in this mechanism is unclear. It has been
shown that the inhibition of the Gi protein with pertussis toxin
reduces the fibroblast proliferation and collagen expression
observed in response to muscarinic agonists [12], suggesting a
key role for the M2 receptor. However, antagonists for M1, M2
and M3 were all effective at inhibiting the fibroblast prolifera-
tion induced by acetylcholine [9], although the specific
muscarinic antagonists available are not fully selective [36].
To address this issue, we selectively silenced the M1, M2 and
M3 genes using siRNA. Our results suggest that all M1, M2
and M3 receptors participate in CSE-induced expression of
myofibroblast markers.

In summary, we have demonstrated that cigarette smoke,
which is the main risk factor of COPD and participates in lung
remodelling, may increase the expression of the myofibroblast
markers collagen type I and a-SMA through the activation of a
non-neuronal cholinergic system, which is attenuated by the
anticholinergic aclidinium bromide. Therefore, results observed
in this work support that aclidinium bromide may play a role in
regulating the peribronchiolar fibrotic remodelling of COPD in
addition to the classical bronchodilator activity.
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