Synergistic effects between glycopyrronium bromide and indacaterol on a muscarinic agonist-induced contraction in airway smooth muscle

Dr. Hiroaki Kume, Dr. Shu Imbe, Dr. Takashi Iwanaga, Dr. Yuji Tohda

Department of Respiratory Medicine and Allergology, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan, 589-8511

Rationale: Bronchodilators play an important role in therapy for stable chronic obstructive pulmonary disease (COPD). Anticholinergics and beta2-adrenoceptor agonists are widely used to improve lung function, symptoms, and QOL of patients with COPD. This study was designed to investigate whether combination of anticholinergics and beta2-adrenoceptor agonists is beneficial. Combined effects on airway smooth muscle contraction were examined using glycopyrronium bromide (GB), a long-acting muscarinic antagonist (LAMA), and indacaterol, a long-acting beta2-adrenoceptor agonist (LABA).

Methods: For record of isometric tension, the strips of tracheal smooth muscle of guinea pigs were placed in the organ bath and were perfused with the physiological solution at a constant flow rate of 2 ml/min.

Results: One nM indacaterol caused a modest (7.9%, n=18) inhibition of 1 µM methacholine (MCh)-induced contraction of tracheal smooth muscle. GB at 3, 10, and 30 nM caused a concentration-dependent inhibition of 1 µM MCh-induced contraction with values of percent inhibition of 11.1, 21.9, and 52.2%, respectively (each n=6). However, when equi-molars of GB were applied in the presence of 1 nM indacaterol, the inhibitory effects of GB (3, 10, and 30 nM) / indacaterol (1 nM) combination were markedly enhanced, with values of percent inhibition of 25.6 (p<0.05), 46.1 (p<0.01), and 91.2% (p<0.01), respectively (each n=6).

Conclusions: Indacaterol synergistically potentiated GB-induced relaxation against cholinergic stimulation in airway smooth muscle. These results may underlie the clinical benefit of combination therapy of LABA and LAMA for patients with COPD.