Title: Validation of respiratory inductive plethysmography in people with obesity hypoventilation syndrome

Ms. Carly 22129 Hollier carly.hollier@sswahs.nsw.gov.au 1,2, Dr. Alison 22152 Harmer alison.harmer@sydney.edu.au 2, Dr. Lyndal 22153 Maxwell Lyndal.Maxwell@acu.edu.au 3, Dr. Collette 22154 Menadue collette.menadue@sswahs.nsw.gov.au 1, Dr. Amanda 22155 Piper amanda.piper@sswahs.nsw.gov.au 1 and Dr. Grant 22171 Willson Grant.Willson@canberra.edu.au 4. 1 Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia, 2050; 2 Faculty of Health Sciences, University of Sydney, NSW, Australia, 2141; 3 Faculty of Health Sciences, Australian Catholic University, Sydney, NSW, Australia, 2060 and 4 Faculty of Health, University of Canberra, Australian Capital Territory, Australia, 2617.

Body: The excessive chest and abdominal adiposity present in obesity hypoventilation syndrome (OHS) may reduce the accuracy of respiratory inductive plethysmography (RIP). The aim of the study was to validate RIP measures of ventilation in OHS against a clinical standard (spirometry). Measures of tidal volume (V_T), minute ventilation (V_E) and respiratory rate (RR) were obtained simultaneously from RIP (LifeShirt™) and a spirometer during two 40-minute air-supplemental O_2 breathing tests. 16 paired samples were obtained per subject. Using the Bland Altman method, bias was expressed as spirometer–RIP mean difference (MD), and as a percentage. Error was expressed as limits of agreement (LOA) and as a percentage. Differences between groups were assessed with independent samples t-tests. 162 viable paired samples were obtained from 13 subjects with OHS and 197 paired samples were obtained from 13 age- and gender-matched controls. Error of RIP measures was larger in subjects with OHS: V_T MD=3mL (1%), LOA=-216 to 222mL (±36%) compared with controls, MD=5mL (1%), LOA=-160 to 169mL (±20%); V_E: MD=0.2L/min (2%), LOA=-4.1 to 4.4L/min (±36%) in subjects with OHS compared with MD=0.1L/min (1%), LOA=-1.4 to 1.5L/min (±20%) for controls; and RR: MD=0.2br/min (2%), LOA=-5 to 5br/min (±27%) in subjects with OHS compared with MD=-0.1 br/min (1%), LOA=-1 to 1br/min (±12%) for controls. Between group differences were only statistically significant for RR ($p<0.05$). V_T %error correlated strongly with body mass index ($r_s=0.53$, $p<0.01$) and waist circumference ($r_s=0.61$, $p<0.01$). In conclusion, the accuracy of RIP is reduced in people with OHS, limiting its capacity for detecting small changes in ventilation.