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Circulating endothelial progenitor cells and

chronic pulmonary diseases
A. Huertas and P. Palange

ABSTRACT: Circulating endothelial progenitor cells (EPCs) are bone marrow-derived cells that

contribute to vascular healing and remodelling under physiological and pathological conditions.

Although controversies exist regarding the definition and origin of EPCs, it has been widely

demonstrated that they are involved in several diseases and that they have therapeutic

implications.

Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation that is not

fully reversible, associated with abnormalities of airways (bronchitis) and parenchyma

(emphysema), reduced exercise tolerance and systemic inflammation.

Growing evidence has also suggested that endothelial dysfunction may play a role in COPD.

Although it is not clear whether endothelial dysfunction represents a cause or a consequence of

COPD, several studies have highlighted the importance of EPCs in this disease, suggesting that

the bone marrow could be a novel target of COPD.

The present review summarises the role of EPCs in pulmonary diseases, with particular emphasis

on COPD. The aim is to improve understanding as to the possible role of EPCs in COPD

pathophysiology. This may help in the identification of novel diagnostic and therapeutic tools in COPD.
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I
n 1997, ASAHARA et al. [1] first described the
differentiation of adult haemopoietic pro-
genitor cells into an endothelial phenotype.

In 1998, SHI et al. [2] showed that genetically
tagged transplanted bone marrow cells were
covering implanted grafts. These pioneering
studies suggested the presence of circulating
angioblasts in the adult peripheral blood. Since
the late 1990s, circulating haemopoietic and
endothelial progenitor cells (EPCs) have been
studied in order to characterise and understand
their role in the pathophysiology of various
diseases. Accumulating evidence has shown that
circulating EPCs contribute to vascular healing
and remodelling under physiological and patho-
logical conditions. Despite some controversies
still existing with respect to the identification and
origin of these progenitor cells, increasing evi-
dence suggests that these bone marrow-derived
cells play an important role in diseases, such as
cardiovascular and cerebrovascular, endocrino-
logical, haematological and connective tissue
disorders [3]. Plasma levels of these circulating
EPCs have been seen to correlate with disease
severity and risk factors [4]. In contrast to the

conventional assumption that damaged organs
are repaired only by migration and proliferation
of adjacent cells, increasing evidence suggests
that ectopic progenitor cells are mobilised into
the systemic circulation and recruited to the site
of tissue regeneration. Furthermore, EPCs also
seem to have therapeutic value in coronary artery
diseases, increasing neovascularisation of tissue
following ischaemia [5–7] and contributing to re-
endothelialisation after endothelial injury [8, 9].

The aims of the present review are, first, to
provide a state-of-the-art overview of circulating
EPCs and pulmonary diseases, with particular
emphasis on chronic obstructive pulmonary
disease (COPD) and emphysema, and then to
present recent findings in the field, which may
have implications for diagnostic tools and novel
therapeutic strategies in chronic lung diseases.

CIRCULATING EPCS
Definition
In 1997, ASAHARA et al. [1] showed that purified
CD34+ haemopoietic EPCs from human periph-
eral blood could differentiate into endothelial
cells (ECs) in vitro [1]. These so-called endothelial
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progenitor cells (EPCs) showed expression of various EC
markers and migrated to sites of active angiogenesis in several
animal models. This behaviour suggested that they might be
useful for targeted delivery of therapeutic agents that stimulate
or inhibit angiogenesis. Until that moment, production of new
blood vessels in adults had been thought to result exclusively
from the proliferation, migration and remodelling of fully
differentiated ECs derived from pre-existing blood vessels [10,
11]. According to this initial discovery, EPCs were defined as
cells positive for both haemopoietic stem cell markers, such as
CD34, and an endothelial marker protein, such as kinase insert
domain receptor (also known as vascular endothelial growth
factor (VEGF) receptor (VEGFR) 2). Since CD34 was not found
exclusively on haemopoietic stem cells, but also on mature
ECs, several authors used the more immature haemopoietic
stem cell marker CD133 (or AC133) to define EPCs [12, 13].
Principle amongst the defining criteria of these endothelioid
cells are the presence/absence of the cell surface glycoproteins
CD34 (a marker of haematopoietic progenitor cells) [14, 15],
CD31, CD146/P1H12 (also frequently used to define circulat-
ing ECs), AC133 and fetal liver kinase-1 (another VEGFR),
Bandeirara simplicifolia lectin 1 binding, the uptake of acetylated
low-density lipoprotein–cholesterol, the presence of von
Willebrand factor and in vitro morphology [2, 16, 17]. Despite
this definition, controversies still exist regarding the identifica-
tion and origin of the EPCs isolated from peripheral blood
mononuclear cells. As recently reviewed by URBICH and
DIMMELER [18], several sources of ECs may exist: 1) the rare
haemopoietic stem cells; 2) myeloid cells which may differ-
entiate in vitro to ECs; 3) other circulating progenitor cells, such
as adult bone marrow-derived stem/progenitor cells (e.g. side-
population cells and multipotent adult progenitor cells) [19,
20]; 4) circulating mature ECs [21]; 5) cells not derived from
bone marrow, which have been seen to replace ECs in grafts
[22]; and 6) tissue-resident stem cells [23].

In 2011, more than ten years after the first description of
circulating EPCs, more specific phenotypes are still needed.
Hopefully, more surface markers or better profiling of distinct
cell populations will soon help to define those cells.

Role in diseases
Despite the difficulties in defining and characterising circulat-
ing ECs, increasing evidence suggests that bone marrow-
derived cells play an important role in diseases, such as
cardiovascular and cerebrovascular, endocrinological, haema-
tological and connective tissue disorders [3]. Circulating EPCs
are decreased in number and show decreased function in

patients with chronic heart failure [24], stroke [25] insulin-
dependent [26] and non-insulin-dependent diabetes [27],
rheumatoid arthritis [28] and chronic renal failure [29–31].
Acute ischaemia is known to mobilise EPCs, as recently
reported in patients with acute myocardial infarction [32–34]
and unstable angina [35]. These data suggest that EPCs are
physiologically important in maintaining vascular integrity.
Interestingly, EPC numbers are decreased in chronic diseases
characterised by increased cardiovascular risk, perhaps due to
progressive exhaustion of repair capabilities. It is also known
that circulating EPC numbers decrease as the number of
cardiovascular risk factors increase; patients with coronary
artery disease have a lower number of EPCs than healthy
controls, [36–39]. These authors also reported that numbers of
EPCs correlated inversely with the number of risk factors.
Similarly, in males free of a history of clear atherosclerosis,
HILL et al. [40] reported an inverse correlation between EPC
numbers and the Framingham risk factor score, and between
EPC numbers and macrovascular function, as assessed by
flow-mediated dilatation.

In cardiovascular diseases, the finding that bone marrow-
derived cells can migrate to sites of ischaemia and express
endothelial surface markers has introduced the challenge of a
role for EPCs for therapeutic use. These cells have been shown
to actively promote vascular repair, mainly through two
mechanisms: neovascularisation, and endothelial regeneration.
Several experimental and clinical studies have been performed
with different improvement models, demonstrating the possi-
ble therapeutic importance of EPCs [6, 7, 9, 41–44]. Statins [36,
45] and angiotensin II receptor antagonists [46] have been seen
to partly restore the decreased number of EPCs. Autologous
EPCs have been used to improve vascularisation of myocar-
dium or lower limbs in patients with acute myocardial
infarction [7] and animals with experimentally induced arterial
lesions [47]. In both cases, vascularisation improved and tissue
damage was reduced following treatment. Regular exercise
training has also been shown to augment the number of
circulating EPCs in patients with cardiovascular risk factors
and coronary artery disease, and is associated with improved
vascular function and nitric oxide synthesis [48].

CIRCULATING PROGENITOR CELLS AND LUNG
DISEASES
Despite this understanding, little is known about circulating
EPCs in lung diseases (table 1). To date, in asthma, for
example, STIRLING et al. [49] have reported that systemic
interleukin (IL)-5 increased circulating eosinophil progenitor

TABLE 1 Comparison of the main roles of circulating endothelial progenitor cells (EPCs) in lung diseases

Asthma Favourable role in asthma progression [49–52]: mobilisation, terminal differentiation and maintenance of mature eosinophil progenitors

PH Promote PH? [53–55]

Protective role against PH? [56]

No effect because of EPC dysfunction? [57]

EPC administration acts positively against PH in MCT-induced model [57, 58]

COPD Favourable role in COPD progression: decreased tissue repair and/or angiogenesis? [52, 59, 60]

PH: pulmonary hypertension; COPD: chronic obstructive pulmonary disease; MCT: monocrotaline.
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numbers, suggesting a key role for systemic IL-5 in eosinophil
mobilisation. It is known that the inflammation of chronic
asthma is associated with activation of peripheral blood T-
lymphocytes and eosinophils and subsequent infiltration of
these cells into the airway [61]; in particular, type-2 T-helper
cells, source of IL-5, are increased in the asthmatic airway [62].
IL-5 levels have been measured in the circulation of asthmatic
individuals [63], rise during asthma exacerbations [64] and
play an important role in the mobilisation, terminal differ-
entiation and maintenance of mature eosinophils [65]. It has
been shown that mature eosinophils develop from pluripotent
haematopoietic progenitor cells that express the cell surface
glycoprotein CD34 [50]. Increased numbers of CD34+ cells
have been demonstrated in both blood and bone marrow from
atopic individuals as compared with normal subjects [51], and
in the bronchial mucosa of atopic asthmatic subjects [66]. These
findings underlie the central role of IL-5, confirming the data of
O’BYRNE et al. [67] on the mobilisation of eosinophil precursors
(CD34+/CD45+ progenitors) into the peripheral blood, and
that systemic rather than airway IL-5 activity may be more
potent in this role.

In pulmonary diseases in which endothelial dysfunction
represents a key part of the pathophysiology, growing
evidence is showing the importance of EPCs. In idiopathic
and associated pulmonary arterial hypertension (PAH), clin-
ical studies have suggested a link between EPC count and
PAH severity, but with controversial results, as recently
reviewed elsewhere [52]. In experimental studies, EPC num-
bers are increased in hypoxia-induced PAH because of com-
pensatory mobilisation and recruitment mechanisms. As a
therapeutic tool, infusion of EPCs seems promising in
monocrotaline-induced PAH, but further investigations are
required for a better understanding.

Chronic obstructive pulmonary disease
EPCs may also be involved in COPD, but little is known about
their role in chronic bronchitis and emphysema. COPD is also
frequently associated with abnormalities in the pulmonary
circulation, leading to pulmonary hypertension and right
ventricular failure, with a greater mortality risk [68]. PAH in
COPD occurs due to alterations in pulmonary vessel structure
(intimal hyperplasia of muscular arteries and muscularisation of
small arterioles) [69]. Intimal hyperplasia is produced by the
proliferation of poorly differentiated smooth muscle cells and
the deposition of collagen and elastic fibres [69]. The molecular
mechanism of mobilisation, homing and differentiation of
putative smooth-muscle-like progenitor cells remains to be
clarified. Since endothelium plays a key role in regulating cell
growth in the vessel wall, it has been hypothesised that
endothelial dysfunction might be an initiating event that pro-
motes vessel remodelling and PAH in COPD [68]. However,
the pathobiology of pulmonary vascular remodelling in
COPD is not fully understood and it remains unclear whether
endothelial-like cells and smooth-muscle-like cells differentiate
from a common vascular progenitor cell. Several animal
and clinical studies have demonstrated that transplantation of
autologous EPCs or unfractionated bone marrow cells facilitates
vascular repair [8, 70]. Conversely, others have suggested that
circulating EPCs could participate not only in maintenance of
vascular homeostasis but also in the pathogenesis of various

diseases, by inducing smooth muscle cell proliferation and
neointimal formation at sites of vascular injury [71–74]. PEINADO

et al. [53] showed the presence of vascular progenitor cells
(VPCs) adhered to the endothelial surface and within the
intimal layer in pulmonary arteries of COPD patients. The
presence of VPCs in the vicinity of areas of endothelial
denudation and their relation with the response to hypoxic
stimulus suggested that these cells might contribute to an
ongoing process of endothelial repair. The authors also
described an increased number of VPCs in the intima of
pulmonary arteries, which was associated with the enlargement
of the vessel wall. The latter finding suggests that VPCs could
also be involved in the pathogenesis of intimal hyperplasia,
presumably through VEGF-related signals.
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FIGURE 1. Bone marrow response to endothelial damage in: a) normal

subjects; and b) chronic obstructive pulmonary disease patients: potential

mechanisms and consequences. VEGF: vascular endothelial growth factor; VLA:

very late antigen; CCR: CC chemokine receptor; CXCR: CXC chemokine receptor;

EPC: endothelial progenitor cell; TNF: tumour necrosis factor; IL: interleukin.
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Furthermore, TUDER et al. [75] and KASAHARA et al. [76] have
shown that emphysema is associated with decreased lung
expression of VEGF and its receptor VEGFR-2 in animal
models. Therefore, it is reasonable to assume that EPCs might
be involved in COPD pathogenesis and that the bone marrow
could be a new target of COPD. It has been shown that 13% of
COPD patients have anaemia associated with increased
systemic inflammatory marker levels [77, 78], but few data
are available regarding other cell lineages, despite neutrophil
activation and increased smoke-related turnover of granulo-
cytes [79]. Increasing evidence from our group, confirmed by
others, is showing that circulating progenitor cells are involved
in COPD and correlate with disease severity. It has been
demonstrated that circulating haemopoietic progenitor cell
numbers are greatly decreased at rest, do not increase after
endurance exercise and correlate with the level of hypoxaemia,
severity of airway obstruction and peak oxygen uptake in
COPD patients [59]. These data suggest a possible involvement
of EPCs in the pathogenesis of decreased exercise capacity. In
particular, COPD patients may show decreased capability for
repair or angiogenesis of skeletal muscle due to a reduction in
the number of circulating CD34+ cells, perhaps secondary to
excessive peripheral utilisation of these cells or activation of
apoptosis. CD34+ cells were also shown to be involved in
tissue repair in skeletal muscle: 1) CD34+ cells are able to
migrate to muscular connective tissue [80]; and 2) in a murine
model, the percentage of these progenitor cells increased in
muscle fibres when animals were kept active (running wheel in
the cage) [81], suggesting that CD34+ cells were capable of
substituting skeletal muscle. Data have also been published on
athletes, showing that circulating CD34+ cell counts were
higher in runners than in sedentary subjects, but decreased on
the day following a marathon race, in agreement with their
possible utilisation in skeletal muscle for repair purposes [82].
Furthermore, the hypothesis that the type of exercise and
fitness level could modulate cytokine/growth factor release
has also been tested; indeed, it was found that all-out exercise
in well-trained rowers acutely mobilised haematopoietic
progenitor cells, T- and natural killer lymphocytes and
immature reticulocytes, suggesting that progenitor cell mobi-
lisation may occur in response to tissue hypoxia, or signals
originating in skeletal muscle at a very high workload [83]. The
lung could represent another hypothetical target for circulating
EPCs in COPD patients. Examination of lung tissue from
COPD patients revealed the presence of apoptotic cells in
greater number than in control lungs or those from smokers
without COPD [76]. Apoptotic cells included alveolar and
bronchial epithelial cells, as well as ECs in the parenchyma.
Importantly, the apoptosis persisted in patients with COPD
after smoking had ceased [60]. It could be hypothesised that
the excessive lung utilisation of circulating EPCs, in response
to cell apoptosis, led to a decreased number of circulating EPCs
(fig. 1). Further studies are still required in order to elucidate
the targets of the circulating EPCs.

As for the mobilisation and homing of EPCs, it is possible that
inflammatory processes, occurring in COPD (neutrophil
activation and oxidative stress), or tissue hypoxia may be
involved in the decrease in circulating CD34+ cell numbers,
but little is known regarding possible associations between
circulating CD34+ cells and pro-inflammatory mediators in

COPD. In severe COPD patients who displayed a low body
mass index (BMI), the bone marrow appears insufficiently
stimulated despite higher plasma growth factor concentrations
[84]. Therefore, it is reasonable to speculate that the bone
marrow could be inhibited by myelosuppressive cytokines,
such as tumour necrosis factor-a, leading to reduced regen-
erative capacity. It has recently been shown that disease
severity correlated with pro-angiogenetic and inflammatory
marker levels and was inversely associated with circulating
EPC numbers [84]. Furthermore, among patients with similar
pulmonary impairment, those who displayed a low BMI had a
more markedly reduced number of circulating EPCs. The
findings also indicate that, in severe low-BMI COPD patients,
bone marrow function seems to be further impaired and may
lead to reduced reparative capacity. The systemic involvement
of COPD, characterised by systemic inflammation, malnutri-
tion and skeletal muscle dysfunction, may indicate exhaustion
of repair and/or angiogenetic resources (fig. 1) [85].

CONCLUSION
As revealed in the present review, several potential uses of bone
marrow-derived circulating EPCs are indicated. The regula-
tion of EPC homing, differentiation and proliferation remains
unclear and requires greater understanding, in particular in
chronic lung diseases, in order to achieve optimal therapeutic
benefits. As for cardiovascular diseases, therapeutic utilisation
of EPCs might also be extended to COPD in the future.

More studies are needed to understand the pathophysiology of
chronic lung diseases, such as COPD, particularly regarding
the systemic involvement of the disease.
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