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ABSTRACT: Bradykinin (BK) induces fibroblast contraction but the structural changes and

intracellular mechanisms involved have not been completely explored.

We stimulated HFL-1 fibroblasts with BK to assess: 1) fibroblast contractility; 2) the role of a-

smooth muscle actin (SMA) in contraction by small interfering RNA (siRNA); 3) a-SMA protein

expression; 4) a-SMA and F-actin structure; 5) intracellular calcium concentration ([Ca2+]i); and 6)

phosphorylated myosin light-chain (pMLC) and MLC kinase (MLCK) expression.

BK triggered concentration- and time-dependent fibroblast gel contraction in conjunction with

a-SMA over expression, but not in a-SMA-siRNA-treated cells. BK also increased a-SMA+ and F-

actin+ cell number and stress fibre polymerisation (detectable at 5–60 min). These BK-induced

changes were associated with an increase in [Ca2+]i, which peaked within 15 s, and activation of

pMLC, which was detectable at 5–60 min. No MLCK content modification was observed. The

different manifestations of the BK-induced fibroblast activation were downregulated at different

levels (25–100%) by HOE140, a specific BK B2 receptor (B2R) antagonist and by the Ca2+

chelator, EGTA.

Thus, BK-induced fibroblast contraction, associated with differentiation into a-SMA+ myofibro-

blasts, is mediated through the activation of the B2R and involves the Ca2+/calmodulin pMLC-

dependent pathway.
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B
radykinin (BK) and the related peptide
kallidin (KD or lys-BK) are formed from
high- and low-molecular weight kinino-

gen precursors following the activation of plasma
and tissue kallikreins by various stimuli leading
to inflammation, tissue damage and remodelling
[1]. Two distinct mammalian BK receptor sub-
types have been characterised based on their
pharmacological properties: the constitutive B2
receptor (B2R) and the inducible B1 receptor
(B1R), which shows high affinity for the carboxyl
terminally truncated kinins [des-Arg9]-bradyki-
nin and [des-Arg10]-kallidin [2]. Activation of the
B2R, a G-protein-coupled receptor constitutively
expressed on most cell types, leads to a number
of intracellular events, including activation of
phospholipase A2 and C and mitogen-activated
protein kinase phosphorylation [3]. In contrast,
B1 receptors are not present in tissues under
normal conditions but their expression can be
induced during inflammation or tissue injury [4].

Functional and biochemical evidences prove the
presence of kinin receptors in many cell types in
the respiratory tract, including vagal sensory
nerve fibres, epithelial and seromucous cells,

smooth muscle cells and fibroblasts [5, 6]. In
disorders such as asthma, BK has been show to
induce acute inflammatory responses, with
plasma protein extravasation, mucus hypersecre-
tion and smooth muscle contraction [7, 8]. In
addition, BK may be involved in the repair
processes in chronic inflammatory diseases of
the airways through its ability to induce fibro-
blast proliferation and differentiation into a-
smooth muscle actin (SMA)-positive myofibro-
blasts [9].

During differentiation into myofibroblasts, lung
fibroblasts develop cytoskeletal features similar to
those of smooth muscle cells, as they express
myosin chains and a contractile isoform of a-SMA
actin and promote contractility of the surrounding
lung parenchymal components [10]. The exertion
of tractional force on extracellular matrix compo-
nents is dependent on the spatial and temporal
pattern of myosin light-chain (MLC) phosphor-
ylation and is controlled by the MLC kinase
(MLCK) Ca2+-dependent pathway, which requires
the influx of Ca2+ from the extracellular space or
the release of Ca2+ from sequestered internal
stores: calcium-dependent contraction [11]. In
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lung tissues from asthmatic patients, upregulation of smooth-
muscle MLCK mRNA is associated with increased cell con-
tractility and, through mathematical models, it was shown that a
higher total MLCK led to a higher MLCK activity [12]. Other
mechanisms of force generation independent of MLC phos-
phorylation have also have described [13], such as the activation
of Rho and Rho kinase pathway [11] dependent on inhibition of
MLC phosphatase [14].

The demonstration that BK may promote fibroblast differentiation
into a-SMA-positive myofibroblasts [9] and may induce contrac-
tion of the surrounding parenchymal components [15] further
underlines the complex role that this kinin may have in tissue
dysfunction in chronic inflammatory diseases, such as asthma.

BK-induced fibroblast-mediated contraction of collagen gel
was detectable after 30–60 min of incubation, appeared to be
mediated through phospholipase C and was, at least partially,
dependent on protein kinase C activation and intracellular
Ca2+([Ca2+]i) mobilisation [15].

Whether and to what extent BK-induced lung fibroblast-
mediated contraction of collagen gel is associated with a
contemporary differentiation in a-SMA expressing myofibro-
blasts and, as demonstrated in airway smooth muscle, with the
involvement of MLC phosphorylation is still undefined.

Therefore, an in vitro study was designed to assess the time-
dependent fibroblasts contraction, a-SMA expression and
structure, [Ca2+]i mobilisation, and phosphorylated MLC and
MLCK expression in human fetal lung fibroblasts.

METHODS

Fibroblast culture
Human fetal lung fibroblasts (HFL-1; lung, diploid and
human) were obtained from the American Type Culture
Collection (Manassas, VA, USA). HFL-1 fibroblasts were
cultured in Dulbecco’s modified Eagle’s medium (DMEM;
Euroclone Ltd, Paignton, UK) containing 10% fetal calf serum,
and penicillin/streptomycin (Euroclone Ltd), and used for
experiments from passage 11 to 21.

Small interfering RNA and transfection
Small interfering RNA (siRNA) for a-SMA and nonspecific
siRNA for control were purchased from Dharmacon
(SMARTpool; EuroClone, S.p.A, Milan, Italy). Transfection of
siRNA was performed as previously described [16].

Experiment design
To assess fibroblast-gel contraction, HFL-1 were embedded in
collagen gels, cultured for 5 days and then stimulated with BK
(0.01–1 mM) for different time-periods (30, 60 or 120 min).
After transfection with a-SMA, siRNA cells were cultured for
60 min in the presence or absence of BK. a-SMA and F-actin
expression were evaluated 5, 15, 30 and 60 min after BK (1 mM)
incubation. Ca2+ mobilisation was evaluated in fibroblasts
stimulated with BK (0.001–1 mM). MLC phosphorylation was
evaluated 5, 15, 30 and 60 min after BK (1 mM) incubation. In
some experiments, cells were pre-incubated for 15 min (a-SMA
and F-actin expression, Ca2+ mobilisation and MLC phosphor-
ylation) or 30 min (gel contraction) with B2R antagonist
HOE140 (1 mM ) before exposure to BK. To evaluate the effect

of Ca2+ chelator, cells were stimulated with BK for 60 min in
medium containing EGTA.

The role of Ca2+/calmodulin (CaM) and MLCK on BK-induced
collagen gel contraction was investigated using the specific
inhibitor of Ca2+/CaM, W7 (25 mM), and the inhibitor of
MLCK, ML-7 (25 mM).

In order to determine the effect of depleting influx of
extracellular Ca2+ and efflux of Ca2+ stored on BK-induced
Ca2+ mobilisation in HFL-1, cells were stimulated with BK
1 mM in the presence of Ca-chelator EGTA (5 mM) or were pre-
incubated for 30 min with inositol-(1,4,5)-trisphosphate (IP3)
receptor antagonist 2-amino-ethoxydiphenyl borate (2-APB;
200 mM) before stimulation with BK.

Immunostaining for a-SMA and F-actin
For a-SMA and F-actin organisation, human fetal lung fibroblasts
were fixed in methanol at -20uC and then stained with mono-
clonal mouse antibody against human a-SMA (clone 1A4; Dako
cytomation, Milan, Italy) or Texas Red-conjugated phalloidin
(Sigma Aldrich S.r.l, Milan, Italy). Fluorescein isothiocyanate-
conjugate goat anti-mouse immunoglobulin G (Immunotech,
Beckman Coulter Company, Milan, Italy) was used to visualise a-
SMA. Quantification of the myofibroblast number in each
experimental condition was performed at 206 magnification,
as previously described [16–18]. Only cells clearly showing
positive staining for a-SMA or F-actin were counted in a blinded
manner in a minimum of three randomly chosen microscopic
fields. The results were expressed as percentage of a-SMA
positive cells.

Western blot analysis
Electrophoresis of protein extracts and subsequent blotting
were performed as previously described [18, 19]. Blots were
incubated with a mouse anti-a-SMA antibody (Dako cytoma-
tion), anti-MLC kinase antibody (Sigma), anti-MLC antibody
(Sigma) or anti-diphospho-MLC (Thr-18/Ser-19; Santa Cruz
Biotechnology, Santa Cruz, CA, USA) and visualised using the
enhanced chemiluminescence system (Pierce Biotechnology,
Inc., Rockford, IL, USA). Blots were re-probed with anti-b-actin
antibodies (clone C4; Boehringer Mannheim, Inc., Mannheim,
Germany). The relevant band intensities were quantified using
a Versadoc Imaging System model 3000 (Biorad Laboratories,
Inc., Hercules, CA, USA).

Collagen gel contraction assay
Collagen gel contraction assay was conducted as previously
described [20]. Collagen gels were prepared by mixing the
appropriate amount of rat tail tendon collagen, distilled water,
four-times concentrated DMEM and cell suspensions. Aliquots
(500 mL?well-1) of the mixture were cast into each well of a 24-
well tissue culture plate (Falcon; BD Becton Dickinson Italia,
S.p.A, Milan, Italy) and allowed to gel. HFL-1 cells (1.56105)
were cultured in collagen gels for 5 days. After being washed,
the collagen gels were released from the tissue culture plates
and transferred into 60-mm tissue culture dishes, which
contained DMEM with or without designated reagents and
incubated at 37uC under a 5% CO2 atmosphere for the
indicated period. Various reagents were added before release
or simultaneously with release as described separately. Gel
size was measured using ImageJ (National Institute of Health,
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Bethesda, MD, USA). Data are expressed as the ratio of treated
gel area to untreated gel area measured immediately after
release.

Fluorimetric determination of the [Ca2+]i

The fluorescent calcium indicator Fura-2 was used to deter-
mine the intracellular calcium concentration in human airway
fibroblasts (HFL-1). HFL-1 fibroblasts (2.5-36104) grown on
20-mm coverslips were incubated with 10 mM Fura-2acetoxy-
methyl ester (Fluka, Milan, Italy) and Pluronic F-127 (Sigma) in
medium for 45 min at 37uC. After addition of known
concentrations of bradykinin to the perfusion chamber, the
time-course of the cytosolic calcium level was determined as
described previously [21].

Statistical analysis
Statistical evaluation was performed using the statistical
software package GraphPad Prism 3.0 (GraphPad Software,
San Diego, CA, USA). Data are presented as mean¡SEM.
[Ca2+]i curve to BK was tested for significance by one-way
ANOVA and post hoc Student Newman–Keuls test. A p-value
,0.05 was considered to be significant.

RESULTS
Modulation of fibroblast-induced collagen-gel contraction
In control gels containing unstimulated HFL-1 cells, a
spontaneous and detectable contraction was observed over
the entire experimental period, with a significant % decrease in
area at 120 min (p,0.05). At all the concentrations tested
(0.01 mM, 0.1 mM or 1 mM), BK induced a detectable increase in
gel contraction, significantly after 60 and 120 min of incubation
(p,0.01, each comparison) (fig. 1a).

Pre-treatment of HFL-1 cells with the B2R antagonist HOE140
(1.0 mM) or the addition of the Ca2+ chelator EGTA (5.0 mM) to
the culture medium before stimulation with submaximal
concentration of BK (0.1 mM) for 60 min provoked a 63% and
34% inhibition, respectively, of the BK-induced gel contraction
(p,0.05) (fig. 1b). In HFL-1 cells, BK-induced gel contraction
was reduced by the specific inhibitor of calcium/CaM W7
(25 mM) or the inhibitor of MLCK ML-7 (25 mM) at 60 min (83%
and 80% inhibition, respectively; p,0.0001) (fig. 1c).

Role of a-SMA in fibroblast-induced collagen-gel
contraction
To determine the role of a-SMA in BK-induced HFL-1 gel
contraction, siRNA targeted against a-SMA (sia-SMA) was
used to suppress a-SMA expression in both unstimulated and
BK-treated cells (fig. 2a). Following sia-SMA transfection, gel
contraction assay was performed (fig. 2b). siRNA-untreated
cells significantly augmented contraction of collagen gels in the
presence of BK at 60 min, while sia-SMA-treated cells
exhibited a significantly reduced contraction compared to
siRNA-untreated cells in the presence of BK (fig. 2b).

Upregulation of a-SMA expression
Western blot analysis demonstrated a weak constitutive a-SMA
protein expression by HFL-1 cells that was progressively
upregulated by BK (1 mM) from 5–60 min. Quantitative analysis
demonstrated that the increase in protein expression was
significant at each time-point tested (p,0.001, each comparison)
(fig. 3a). Evaluation of HFL-1 fibroblasts by immunofluorescence

showed that the BK-induced enhancement of a-SMA protein
expression was due to a significant increase in the number of
a-SMA+ cells (fig. 3b) and, furthermore, to a timely progressive
polymerisation of a-SMA+ stress fibres (fig. 3b). Similarly,
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FIGURE 1. Bradykinin (BK) increased HFL-1 fibroblast-mediated contraction

of collagen gel via BK B2 receptor (B2R)-Ca2+ calmodulin (CaM)/myosin light-chain

kinase (MLCK)-dependent pathways. a) Time-dependent contraction of collagen

gels by human fetal lung fibroblasts augmented by BK. &: BK 0.01 mM; #: BK

0.1 mM; $: BK 1mM. b) Effects of B2R antagonist HOE140 and Ca2+ chelator EGTA

on BK-induced fibroblast-mediated gel contraction. c) Effects of specific inhibitor of

calcium/CaM W7 and the inhibitor of MLCK ML-7 on BK-induced fibroblast-

mediated gel contraction. b, c) The area of gels was measured after 60 min

incubation with BK (0.1 mM). Data are presented as mean¡SEM from three

independent experiments. **: p,0.01 versus unstimulated cells; *: p,0.05 and

***: p,0.001 versus HFL-1 fibroblasts stimulated with BK.
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rhodamine-phalloidin staining showed a BK-induced increase
in the number of F-actin+ cells and in the polymerisation F-actin+

stress fibres (fig. 3b). Pre-treatment of HFL-1 cells with HOE140
or the addition of EGTA to the culture medium before stimulation
with BK for 60 min provoked a 25% inhibition and a complete
inhibition, respectively, of the BK-induced a-SMA expression
(p,0.01, each comparison) (fig. 4a), in conjunction with a
reduction in the number of a-SMA+ cells and in the organisation
of a-SMA cytoskeletal filaments (fig. 4b). Rhodamine-phalloidin
staining showed similar results (fig. 4b).

Calcium mobilisation of [Ca2+]i from extracellular
compartment
In the presence of extracellular Ca2+ (CaCl2 1.8 mM), the
resting levels of intracellular Ca2+ concentration [Ca2+]i in
unstimulated HFL-1 (23¡1 nM) were increased in a concen-
tration–dependent fashion by BK: 0.001 mM: 42.5¡7.5 nM;
0.01 mM; 105.3¡18.2 nM; 0.1 mM; 234.3¡12.5 nM; and 1 mM;
359.5¡15.8 nM, respectively (fig. 5a). As shown in figure 5b,
in the presence of extracellular Ca2+ (CaCl2 1.8 mM), the
addition of BK (1 mM) to the Fura-2-loaded cells led to a fast
transient rise in [Ca2+]i that reached a peak (BK 1 mM:
360¡16 nM) within 15 s and tended to decrease to the resting
level within 1 min.

When HFL-1 cells were pre-incubated for 15 min with
HOE140, the size of the BK-induced [Ca2+]i was markedly

reduced in comparison to untreated HFL-1 (BK
1 mM+HOE140: 80¡35 nM; BK: 360¡16 nM; p,0.01) (fig. 6a).
In HOE140 pre-treated HFL-1, a BK-elicited [Ca2+]i raise was
characterised by slower time-courses and smaller peak values
compared to untreated cells (fig. 6b). Since the increase of
intracellular calcium can be due to influx of extracellular
calcium or release of calcium from intracellular stores via the
IP3 receptor, we tested the calcium signalling in the presence
or absence of extracellular calcium and/or of the IP3 receptor
antagonist 2-APB. As shown in figure 6c (tracing 2), a BK-
induced [Ca2+]i increase was inhibited (34% inhibition) by pre-
treatment with 2-APB in buffer containing Ca2+ (1.8 mM
CaCl2). When HFL-1 were exposed to BK in buffer Ca2+ free
(0 mM CaCl2; 5 mM EGTA), a dramatic decrease (64%
inhibition) of calcium peak was observed (fig. 6c, tracing 3).
Exposure of HFL-1 to BK in the presence of 2-APB in Ca2+-free
medium (CaCl2 0 M, EGTA 5 mM) resulted in an almost
complete abolition of Ca2+ mobilisation (fig. 6c, tracing 4).

MLC phosphorylation and MLCK expression
MLC phosphorylation was evaluated by Western blotting
using an antibody against the phosphorylated Thr-18 and Ser-
19 residues. BK (1 mM) induced time-dependent Thr-18/Ser-19
phosphorylation, which was detectable after 5 min and was
progressively sustained for 60 min (fig. 7a).

Pre-treatment of HFL-1 cells with HOE140 or the addition of
EGTA to the culture medium before stimulation with BK for
60 min provoked a 54% (p,0.05) and a 38% (p,0.01)
inhibition of the BK-induced MLC phosphorylation, respect-
ively (fig. 7b).

Because spatial and temporal pattern of MLC phosporylation
in fibroblasts is controlled by MLCK, the possibility that BK
could modulate MLCK expression was evaluated. However,
Western blotting studies did not demonstrate any modification
of the endogenous MLCK expression in HFL-1 cells stimulated
with BK for a specified period (fig. 8).

DISCUSSION
Our study demonstrates that BK-induced fibroblast-mediated
contraction of three-dimensional collagen gels is associated
with simultaneous upregulation a-SMA expression and poly-
merisation of a-SMA stress fibres, and involves the Ca2+/CaM
MLCK pathway with MLC phosphorylation. The effects of BK
on fibroblasts were dependent on the increase of [Ca2+]i

concentrations, mainly derived from the extracellular compart-
ment, and appeared to be mediated by the B2R, because the
selective B2R antagonist attenuated the fibroblast responses.

BK, a classical mediator of acute inflammation, has been
proposed as a putative pathogenetic component contributing
to reversible airway obstruction in asthma because it affects
vascular tone and permeability, increases secretion of mucus,
contracts smooth muscle cells and provokes airway hyperre-
sponsiveness [7, 8]. BK may be also involved in tissue fibrotic
changes because of its ability to induce lung fibroblast
activation, proliferation, differentiation and contraction through
a variety of intracellular signals [9, 15, 20]. Peribronchial fibrosis,
a feature of asthma, may lead to the narrowing of small airways
and could contribute to the fixed airflow limitation that
compromises respiratory function [22]. Fibroblasts are known
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HFL-1 fibroblast-mediated collagen gel contraction. a) Expression of a-SMA protein in
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not only to participate in tissue rearrangement through the
deposition of increased amounts of collagen (especially type III
and V), fibronectin and polysaccharides (such as hyaluronic
acid), but also to generate traction forces [23], as also shown in
our study.

When cultured in a gel composed of a native-collagen three-
dimensional system, fibroblasts attach to the collagen fibres
and spontaneously generate traction forces that result in gel
contraction. This function may be increased by a variety of

mediators, including platelet-derived growth factor and
transforming growth factor-b, and downregulated by b-
adrenergic agonists and prostaglandin E2 [24, 25]. In agree-
ment with a previous observation, we found that a significant
increase in BK-induced fibroblast-mediated collagen-gel con-
traction is detectable at BK concentrations similar to those
found in human sputum [26] and after a relatively short period
of time (60 min) [15]. Using siRNA technology, we also
demonstrated the involvement of a-SMA in BK-induced
collagen gel contraction [16]. Blockade of a-SMA expression
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***: p,0.001 versus unstimulated cells.
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prevented the increase in collagen gel contraction that was
observed in HFL-1 after BK stimulation.

A previous study by VANCHERI et al. [9] demonstrated that BK
induced the expression of a-SMA in normal human lung
fibroblasts after 48–72 h. However, the ability of BK in
modulating myofibroblast differention at earlier time-points
has never been studied. Importantly, using Western blot
analysis, we observed, for the first time, an early enhancement
of the expression of a-SMA in the presence of BK, which was
significant after only 5 min of incubation. Our study did not

investigate the intimate mechanisms behind a-SMA protein
expression, but we may speculate that the modulation of a-
SMA protein expression by BK is probably sustained by post-
translational mechanisms rather than a de novo protein
synthesis within 5 min [27]. All actin isoforms, including a-
SMA, are present in cells in a monomeric (G-actin) or a
polymeric state (filamentous or F-actin). F-actin is generally
organised into three discrete structures: actin stress fibres,
lamellipodia and filopodia [2, 10]. Organised in an F-actin
isoform and mainly into stress fibres, as shown here, a-SMA
promotes myofibroblast contractility [10]. Analysis of a-SMA
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and F-actin by immunofluorescence in HFL-1 cells after BK
treatment revealed that the enhancement of the number of a-
SMA+ and F-actin+ cells was associated with a progressive
polymerisation of a-SMA+ and F-actin+ stress fibres. The
findings suggest that BK-induced fibroblast-mediated collagen
gel contraction may be dependent on enhanced fibroblast
differentiation into myofibroblast, with up-regulation of a-
SMA protein expression and its progressive polymerisation
into stress fibres.

The capability of contractile cells to exert tractional force on the
substratum is mainly due to the spatial and temporal pattern of
MLC phosphorylation, regulated by the balance of two
enzymatic activities, the MLC kinases and the MLC phosphat-
ases [11, 28]. MLC kinases are activated by the Ca2+/CaM
complex and catalyze myosin II regulatory light chain phos-
phorylation at two sites: Ser-19 and Thr-18. Phosphorylation at
these sites is required for myosin II filament formation [26, 28,
29], myosin II interaction with F-actin and an increase in myosin
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II ATPase activity. These phosphorylation-driven events are
essential for initiation and maintenance of myosin II-based
contraction [23]. We also showed that BK-induced fibroblast-
mediated collagen-gel contraction is associated with MLC
activation, as demonstrated by the strong inhibition of BK-
induced gel contraction in the presence of the specific inhibitor
calcium/CaM and the inhibitor of MLCK [30], and by the BK-
increased Thr-18/Ser-19 phosphorylation of MLC. These results
are consistent with previous studies showing that MLC
phosphorylation in smooth muscle cells takes the order of
minute when evaluated by Western blotting [31] and is in order
of millisecond when studied by photolysis [32]. No modifica-
tions of MLCK expression occurred in our experimental system,
suggesting that total MLCK content may have almost no
influence on the BK-induced Ca2+/CaM in human fetal lung
fibroblast contraction.

Human fibroblasts, including the human fetal lung fibroblast cell
line used in our study, express the B2R [15]. B2R is involved not
only in fibroblast differentiation but also in their contraction and
in MLC phosphorylation, as demonstrated in our study. Indeed,
pre-incubation of the cells with the specific B2R antagonist
HOE140 significantly inhibited all three responses.

B2R acts through the activation of G proteins that stimulate the
activity of phospholipase C. This results in phosphatidylino-
sitol turnover and in a transient increase concentration of
[Ca2+]i, through Ca2+ influx from the extracellular space and/
or Ca2+ release from sequestered internal store [15, 33].
Exposure to BK increases [Ca2+]i levels in different cell types,
including tracheal epithelial and mouse fibroblasts [34]. Our
study also shows that BK-activation of human fetal lung
fibroblasts was associated with a concentration-dependent
rapid increase in [Ca2+]i levels, kinetically supporting its
involvement in the fast MLCK activation. The instantaneous,
linear and transient rise in [Ca2+]i was partly inhibited by the
specific B2R antagonist HOE140 and by the IP3 receptor
antagonist 2-APB. In contrast, a more dramatic inhibition of
calcium peak was observed in HFL-1 stimulated by BK in
buffer containing [Ca2+]i chelator EGTA, suggesting that in
fibroblast/myofibroblast extracellular calcium is more import-
ant for BK-induced calcium mobilisation than Ca2+ influx
through the release from intracellular stores. The BK-induced
expression of a-SMA and its polymerisation stress fibres were
also completely abolished by EGTA, while MLC phosphoryl-
ation and collagen-gel contraction were partly inhibited by
EGTA. These results are not unexpected findings considering
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the complexity of the different intracellular pathways involved
in fibroblast activation [15, 20, 25].

In conclusion, the current study demonstrated that the increased
fibroblast-mediated collagen-gel contraction observed in the
presence of BK is associated with an enhanced cell differentiation
into a-SMA+ myofibroblasts, mediated through the activation
of the B2R and involves a [Ca2+]i dependent phosphorylated
MLC pathway. However, further studies should be conducted
to determine the effects of BK on human primary normal lung
fibroblast cultures. The modulation of these processes by tar-
geting BK receptors and/or the subsequent signalling pathway
should be considered a novel area of research for reducing
fibroblast-driven airway obstruction, possibly leading to new
therapeutic horizons.
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