First-time treatment with steroids in bronchial asthma: comparison of the effects of inhaled beclomethasone and of oral prednisone on airway function, bronchial reactivity and hypothalamic-pituitary-adrenal axis

ABSTRACT: In a double-blind cross-over study of 12 asthmatic patients the effects of 1,000 µg·day⁻¹ beclomethasone dipropionate (BDP) on airway function, bronchial reactivity and hypothalamic-pituitary-adrenal (HPA) axis have been compared to those of 15 mg·day⁻¹ oral prednisone (PRD). None of the patients had ever received corticosteroids before. Fourteen days' treatment with either of both steroids improved airway function, both subjectively and objectively. Both steroids slightly reduced the responsiveness to histamine. PRD suppressed the corticotrophin-releasing factor (CRF) stimulated cortisol release more than BDP did, whereas there was no significant change in adrenocorticotrophic hormone (ACTH) release. The results indicate that short-term treatment with 1,000 µg·day⁻¹ BDP reduces bronchial hyperreactivity (BHR) in asthmatic patients, whilst having subtle effects on HPA axis. Eur Respir J., 1990, 3, 786-791.

Hyperreactivity of the airways to a wide range of stimulants is a hallmark of asthma [1, 2]. There is increasing evidence that inflammation of the airways contributes to the hyperresponsiveness [1, 3, 4]. Glucocorticosteroids (GCS) remain the most effective therapy for asthma. The mechanism of action of GCS in asthma is still poorly understood, but is probably related to their anti-inflammatory properties. The steroids can be administered systemically, either by injection or orally, or by the inhaled route. Since introduction of the newer corticosteroid aerosols, it has been shown in numerous reports that control of asthma was improved and that aerosol treatment often permitted reduction in the doses of systemic steroids [5, 6]. On the other hand, the information about the effectiveness of steroids in reducing bronchial hyperreactivity (BHR) is less convincing. In some reports a reduction of nonspecific responsiveness was found by prolonged treatment with aerosolized preparations [5, 7-9], whilst in others no such effects have been found [10, 11]. Furthermore, when aerosols are used, reduction in symptoms or improvement in isolated measurements of lung function, rather than a decrease in the severity of BHR, has often been used as the goal of management.

Debate continues about the threshold dose of beclomethasone dipropionate (BDP), at which suppression of endogenous cortisol secretion is likely to occur [6, 12-17]. On the other hand, measurements of plasma cortisol concentrations do not allow a detailed analysis of disturbance in the hypothalamic-pituitary-adrenal (HPA) axis. The corticotrophin releasing factor (CRF) test has recently been introduced as a sensitive method for diagnosis of disturbance in the HPA axis [18, 19].

In the present study the effects of 1,000 µg·day⁻¹ BDP on airway function, bronchial reactivity and HPA axis have been compared to those of 15 mg·day⁻¹ prednisone in 12 asthmatic patients.

Patients, methods and materials

Four female and eight male asthmatic patients, fulfilling the prerequisites for diagnosis [20] and ranging in age from 19-47 yrs, participated in the study. They were out-patients and performed normal duties throughout the study. The protocol of the study was approved by the hospital ethical committee and informed consent was obtained from all patients. The anthropometric data and clinical characteristics of the patients are listed in table 1. The patients took their medication for at least three months on a regular basis. Values for forced expiratory volume in one second (FEV₁) and peak expiratory flow rate (PEFR) are listed in
inhaled over the mouth and clipped nose, and inhaled by tidal
CO₂ from nebulizer, delivered directly into a mask, held loosely
breathing for 2 min. Nebulizer output was maintained at

Histamine inhalation test (HIT)

Table 1. — Clinical characteristics of the asthmatic patients

<table>
<thead>
<tr>
<th>No.</th>
<th>Patient</th>
<th>Age yrs</th>
<th>Height cm</th>
<th>Weight kg</th>
<th>Type of asthma</th>
<th>Concomitant medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>22</td>
<td>193</td>
<td>96</td>
<td>intr.</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>21</td>
<td>182</td>
<td>69</td>
<td></td>
<td>extr.</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>42</td>
<td>185</td>
<td>85</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>24</td>
<td>170</td>
<td>57</td>
<td>intr.</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>24</td>
<td>167</td>
<td>72</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>31</td>
<td>154</td>
<td>60</td>
<td>intr.</td>
<td>extr.</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>47</td>
<td>172</td>
<td>77</td>
<td></td>
<td>intr. extr.</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>29</td>
<td>168</td>
<td>67</td>
<td></td>
<td>intr. extr.</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>28</td>
<td>168</td>
<td>56</td>
<td></td>
<td>extr.</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>34</td>
<td>162</td>
<td>52</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>19</td>
<td>176</td>
<td>58</td>
<td>intr.</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>26</td>
<td>177</td>
<td>73</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

intr.: intrinsic; extr.: extrinsic; ^β: inhalative ^β₂-sympathomimetic; C: disodium cromoglycate; T: theophylline;
I: ipratropium bromide; Keto: ketotifen.

The study was performed according to a double-blind,
cross-over design. After a five day run-in period, in which
the patients continued their usual medication, the subjects
were allocated at random to two groups. One group
received 1 mg·day⁻¹ beclomethasone dipropionate (BDP), (Glaxo, FRG; 250 µg per puff twice in the
morning and in the evening) plus placebo prednisone
tables, followed by prednisone tablets (15 mg between
6 a.m. and 8 a.m. before breakfast; Glaxo, FRG) and a
placebo BDP aerosol for 14 days. The other group
received these treatments in the reverse order. Each patient
was instructed in the correct use of the pressurized aerosol.
To avoid local side-effects from deposition of the steroid in the oropharynx, all patients were instructed
to rinse their mouths after each aerosol treatment. The
patients recorded their medication scores, physical examinations, followed by
measurement of PEFR, endocrinological measurements, spirometry (FEV₁ and forced vital capacity) and histamine
inhalation test. The patients did not take any steroids on the day of examination. To avoid any
interference with the histamine inhalation test [21], ^β₂-adrenergic receptor agonists were withheld for 8 h, and
xanthines for 24 h before the test.

Histamine inhalation test (HIT)

HIT was carried out according to the method of
Cockcroft et al. [22]. Aerosol was generated by a Wright
nebulizer, delivered directly into a mask, held loosely
over the mouth and clipped nose, and inhaled by tidal
breathing for 2 min. Nebulizer output was maintained at
each inhalation. Inhalations were discontinued when there
was a fall in FEV₁ of 20% or more below the lowest
post-saline value. Concentration-response curves to histamine
were plotted relating the percentage fall in FEV₁ to the logarithm of the cumulative dose of histamine
inhaled. From these curves, the concentration that
produced 20% fall in FEV₁ (PC₂₀) was read by interpolation.
Some subjects had a 20% fall in FEV₁ after inhalation of saline. In these cases, therefore, a PC₂₀
could not be calculated.

Endocrinological evaluation

The corticotrophin releasing factor (CRF) test is a novel,
sensitive method for diagnosis of disturbances in the HPA
axis [18, 19]. After two blood samples for basal values
(−15 min and 0 min at identical times before breakfast)
100 µg CRF (hCRF-Bissendorf i.v., Bissendorf, FRG)
were injected within 60 s. No side-effects after CRF-application were observed. Further blood samples
were obtained 15, 30, 45 and 60 min after injection. The plasma adrenocorticotropic hormone concentration
was measured by radioimmunoassay (INC-RIA Immunono-
Nuclear Corporation, Stillwater, Minnesota, USA).
Intra- and interassay coefficients of variation were 6% and
13%, respectively. The plasma cortisol concentration
was determined by a fluorescence assay
(Syva-Advance-Cortison-Assay, Syva Advance, Palo
Alto, CA, USA). Intra- and interassay coefficients of
variation were 6% and 9%, respectively. Areas under the
plasma concentration versus time curves (AUC) were
calculated as integrals under the polygon curves.

Statistics

The study was carried out according to Hills and
Armitage [23] as a cross-over, clinical trial, in which the
effects of different treatments are compared on the same subject during different treatment periods. Data were analysed according to the method of Hills and Armitage [23] using the SPSS-X-programme of the Medizinische Hochschule Hannover.

Results

The patients tolerated both short-term courses of corticosteroid therapy without any complaints. In particular, there were no problems with oropharyngeal candidiasis, hoarseness or sore throat during BDP therapy, probably due to careful rinsing of the mouth after each inhalation and the short duration of active medication. Regarding patient no. 2, the results of the histamine inhalation test and of the endocrinological tests were excluded from statistical analysis; on the day before the trial he took an antihistaminic drug and an oral glucocorticoid for symptoms of neurodermitis; these drugs would have interfered with the clinical tests. Patients’ compliance was excellent, as carefully checked by the diary cards and by nebulizer weight (decrease: 4.32±0.44 g). Patients unanimously accepted both forms of therapy without any marked difference in preference.

The effect of steroid therapy on airways function is summarized in table 3. With both steroids there was a slight increase in FEV₁, which was statistically significant for BDP. The effects of steroid therapy on PEFR were more pronounced. Compared to pretreatment values, both corticosteroids significantly increased PEFR values in the morning as well as in the evening. The increases in FEV₁ as well as in PEFR, induced by BDP and prednisone are not statistically significant from each other.

As shown by the increase in PC₂₀ values, treatment with both 1,000 μg·day⁻¹ BDP and 15 mg·day⁻¹ PRD leads to a reduction in bronchial reactivity (tables 2 and 3). Patients no. 1, 5 and 6 showed a 20% fall in FEV₁ after inhalation of saline and were, therefore, excluded from the statistical analysis, together with patient no. 2 (see above). There was an increase from the mean PC₂₀ of 0.069 mg·ml⁻¹ to values of 0.132 and 0.110 mg·ml⁻¹ for BDP and PRD therapy, respectively (table 3). This reduction in bronchial reactivity reached statistical significance for BDP therapy (p<0.01 versus control, table 3).

Finally, the effects of BDP and PRD treatment on the HPA-axis were studied. The plasma concentrations for cortisol and ACTH were in the normal range before the study. With both kinds of steroid treatment, there is a reduction in basal cortisol concentrations, although the values are still within the normal range and the differences do not reach statistical significance (fig. 1). No significant decrease in basal ACTH levels could be observed. After CRF administration, there was a statistically significant decrease in maximum cortisol concentrations; the effect of PRD was more pronounced than that of BDP, although this difference was not statistically significant. In contrast, neither steroid suppressed CRF-stimulated ACTH-release. Similar results
were obtained by analysing the areas under the plasma concentration-time curves (AUC) for cortisol and ACTH after CRF injection. Again, PRD significantly suppressed AUC values for cortisol, whereas the effect of BDP was less pronounced. There was no change in AUC values for ACTH under BDP or PRD therapy.

Discussion

Bronchial hyperresponsiveness to a wide range of pharmacological and physical agents is one of the most characteristic features of asthmatic airways. There is a relationship between the degree of bronchial responsiveness and the severity of symptoms in asthma [1, 2, 4]. Conversely, a reduction in bronchial responsiveness is associated with a reduction in asthmatic symptoms. Airway inflammation is probably the cause of BHR and, therefore, anti-inflammatory treatment is needed.

In the present study the effects of short-term treatment with inhaled BDP and oral prednisone have been compared to each other in 12 asthmatics. It should be pointed out that the study is not placebo-controlled. Based on the analysis for each individual, possible carry-over effects between the treatment periods were not found. The chosen doses of the drugs are quite common in clinical practice and are considered to be nearly equivalent, based on ventilatory function measurement. Treatment with either 1,000 µg·day⁻¹ BDP or 15 mg·day⁻¹ PRD for 14 days reduced BHR, as indicated by increases of the PC₂₀ values. Interestingly, at the doses administered in this study, BDP was slightly more potent than prednisone in reducing airway reactivity. The PC₂₀ for histamine increased about twofold after 14 days treatment with 1,000 µg·day⁻¹ BDP. A comparable improvement in the severity of BHR has also been described by Kraan et al. [7] and Ryan et al. [24]. They found a decrease in BHR after 4 weeks' treatment with BDP or bunedoside, respectively. In a recent study, an about seven-to eightfold increase in PC₂₀ for histamine after 3–4 weeks treatment with 800 µg·day⁻¹ BDP in patients with severe asthma was found [9]. The reason for these large increases in PC₂₀ in the latter study [9] compared to the present study and other studies mentioned above are not clear, but may be partially explained by the observation that some patients showed an up to 25-fold increase in PC₂₀ after 4 weeks of treatment [9].

Despite these differences in the degree of increase of PC₂₀ all these studies show that there is an increase in the provocative dose of histamine needed to cause a 20% reduction in FEV₁, indicating that aerosol corticosteroids do reduce BHR even after short-term treatment. The rather small changes in the severity of BHR after short-term treatment with BDP suggest that continued treatment with inhaled steroids is necessary to achieve a maximal improvement of patients. Thus, it is possible that regular long-term therapy with inhaled steroids allows healing of the asthmatic inflammation.
Both BDP and prednisone improved ventilatory function parameters in a significant manner, as indicated mainly by increases in PEFR. As was the case for BHR, the degree of improvement was rather small after the short-term treatment. These results together with the reduction in BHR indicate that there is an objective benefit to treatment of patients with steroids, preferentially with aerosols.

One complication of steroid therapy that warrants emphasis is the suppression of the pituitary-adrenal axis. A very wide range of dosages has been reported for suppression of endogenous cortisol production by BDP [6, 14, 25]. Thus, the critical per diem dosage of BDP has variably been identified as 400, 800, 1,600, 2,000 and 3,000 µg [6, 12–17]. Other reports cite no suppression over the range of 400–2,000 µg·day⁻¹ [26, 27]. No change in morning cortisol levels was found after a one year treatment with 1,000 µg·day⁻¹ BDP [28]. It has been suggested that systemic effects of BDP are of little or no practical importance unless the daily dose approximates or exceeds 2 mg·day⁻¹ [6]. Grant et al. [29] found that any appreciable course of oral steroids at any time may have a long-term effect on basal adrenocortical activity. In preparing our study, we were very careful to select only patients who had never received any glucocorticosteroids previously. After 14 days' treatment with 1,000 µg·day⁻¹ or 15 mg·day⁻¹ PRD, there was a reduction in basal cortisol concentrations, particularly after PRD treatment, although the values were still within the normal range. Both PRD and BDP significantly reduced peak cortisol concentrations after CRF-stimulation, and PRD also significantly suppressed AUC values for cortisol. In contrast, there was no decrease in basal and CRF-stimulated ACTH release.

Following long-term corticosteroid therapy or short-term high-dose steroid therapy, hypothalamic-pituitary-adrenal function becomes suppressed. When steroid therapy is withdrawn from the patient with suppressed function, the patient is at risk for acute adrenal insufficiency [25]. The present results of the unchanged basal and CRF-stimulated ACTH release could indicate normal function of the pituitary, whilst reduced stimulated cortisol levels might suggest attenuated adrenal reserve. This does not mean, however, that the pituitary is necessarily normal with respect to stress response, as supramaximal CRF dosage was used [30]. The fact that cortisol secretion is reduced, in spite of an unchanged area under the concentration time curve of ACTH, demonstrates a reduced responsiveness at the adrenal rather than the pituitary level. It cannot be excluded, however, that the late phase of the concentration time curve would show some difference as blood samples were only collected for 60 min [31]. It appears, therefore, that not only long-term therapy, but also short-term therapy with BDP aerosol or low-dose oral PRD affect adrenal gland responsiveness. Alternatively, since the biological half-life of prednisone is 18–36 h, the reduced adrenal response after oral prednisone could also be due to maintained steroid activity on the gland from the oral dose given the day before.

The present study does not provide any information as to how long the effects observed would possibly last. This very important aspect of untoward effects of steroids (inhaled or oral) will have to be addressed carefully together with the question of whether the suppression becomes more pronounced with longer treatment. In view of the increasingly recommended high dosages of steroid aerosols, a detailed and careful analysis of the HPA axis after long-term therapy with steroid aerosols is necessary. Furthermore, the influence of long-term therapy with steroid aerosols on androgen production, which is potentially affected, needs to be studied [32].

References

RÉSUMÉ: Dans une étude en double aveugle avec permutation croisée chez 12 patients asthmatiques, l’on a comparé les effets de 1000 µg par jour de dipropionate de beclométhasone (BDP) sur la fonction des voies aériennes, la réactivité bronchique et l’hypothalamo-hypophysaire-surrénalien, avec ceux de 15 mg par jour de prednisone orale (PRD). Aucun des patients n’avait reçu préalablement de corticostéroïdes. 14 jours de traitement au moyen des deux types de stéroïdes ont amélioré la fonction pulmonaire, à la fois subjectivement et objectivement. Les deux modes d’administration ont réduit légèrement la réactivité à l’histamine. La prednisone orale a entraîné une réduction du facteur libéraire de la corticotropine (CRF), et a stimulé la libération de cortisone plus que ne l’a fait le BDP, quoique il n’y ait pas eu de modification significative dans la libération d’ACTH. Ces résultats indiquent qu’un traitement à court terme avec 1000 µg par jour de BDP réduit l’hyperréactivité bronchique des patients asthmatiques tout en n’ayant que des effets légers sur l’hypothalamo-hypophysaire-surrénalien. Eur Respir J, 1990, 3, 786–791.