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ABSTRACT: Chronic obstructive lung disease affects the entire lung, not just the
airways. Although pulmonary hypertension (PH) has long been recognised in a subset of
patients with COLD, the important pathophysiological questions remain unanswered.
Oxygen supplementation, however, has been shown to blunt the exercise-induced PH in
these patients. Hypercoagulability has also been described in patients with COLD. This
may, in part, be due to the inflammatory aspects of COLD exacerbation events. In
addition to perivascular inflammation, the pathology of vessels in COLD includes
intimal thickening, muscularisation of arterioles, in situ thrombosis, loss of capillaries
and precapillary arterioles, and vascular congestion and stasis. Recent work describes
apoptosis of septal endothelial cells and decreased expression of vascular endothelial
growth factor (VEGF) and one of its receptors, VEGFRII, in lungs from patients with
emphysema. Based on this work, a rat model was developed that shows chronic
blockade of VEGF receptors leads to septal cell apoptosis and results in emphysema
and PH. This animal model has led to prevention trials using 1) a broad-spectrum
caspase inhibitor, 2) a superoxide dismutase mimetic, and 3) a1-antitrypsin.

These findings highlight the importance of vascular endothelial growth factor,
apoptosis, oxidative stress and protease activity in the pathogenesis of emphysema.
They also underscore the importance of the vasculature in what is traditionally thought
of as an airways disease. Future treatment strategies need to address the vascular
components of chronic obstructive lung disease.
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The syndrome of chronic obstructive lung disease or chronic
obstructive pulmonary disease (COPD) evokes the image of
sick airways, of nonasthmatic airway disease, although it is
conceded that the overlap with typical asthma may be impor-
tant for a number patients with smoking-induced COPD. Yet
COPD is more than an airway disease, as is true for most
chronic diffuse lung diseases where the disease process trans-
gresses compartment borders. Certainly the alveolar septal
structures are affected and so are the lung microvessels and the
precapillary arterioles [1–4]. Broadly, in COPD varying degrees
of inflammation are found in the airways, in the parenchyma,
even in the pleura and tissue destruction and fibrosis are found.
The chronic smoker thoroughly smokes their lungs! Because
vascular endothelial cells are next to the liver cells the most
metabolically active cells when it comes to detoxifying xeno-
biotics, whether they arrive via the blood stream or the smoke
of the cigarette, the large lung vascular endothelial cell sur-
face area is affected by the disease and gradually reduced as
the disease progresses. Thus, all the lung cells are working
overtime, they become dysfunctional, undergo apoptosis,
inflammation, ischaemia, proteolysis and fibrosis, eventually
remodelling of the lung tissue, airways, and vessels occurs.

Pulmonary hypertension in chronic obstructive
pulmonary disease

In the early days of COPD research it had been recognised
that not all patients with COPD look alike and the clearly

distinguishable phenotypes, of the "blue bloater" and the
"pink puffer" were described [5]. It was also recognised that
some patients had pulmonary hypertension whereas others
did not. In a landmark article BURROWS et al. [6] showed how
varied the pulmonary artery pressure really was in the
patients with COPD at rest, and in particular during exercise
[6].

BURROWS et al. [6] also showed that the exercise-induced
pulmonary hypertension was blunted considerably by treat-
ment of the patients with supplemental oxygen, more in some,
less in others [6]. These findings were later confirmed in
studies that also demonstrated a wide spectrum of pulmonary
hypertensive responses to exercise in their cohorts of COPD
patients [7–9]. Interestingly, now 30 yrs after the description
of the haemodynamics in patients with COPD by BURROWS et
al. [6] many of the important pathophysiological questions
remain unanswered. The intricate relationships between the
mechanical and biochemical aspects of lung function, pul-
monary vasomotor tone regulation, the cardiac performance
in the setting of the hyper-inflated lung, the influence of
hypoxia and hypercarbia and the various forms and degrees
of lung vascular remodelling (see below) are still not under-
stood. A more detailed discussion of these issues can be found
in recent reviews and other publications [10–13]. Briefly, most
patients with COPD have mild or moderate pulmonary hyper-
tension at rest (table 1), yet their pulmonary hypertension
may be latent and can easily be unmasked by exercise (fig. 1).
Unfortunately the severely hyperinflated lung tissue make the
echocardiographic evaluation of pulmonary hypertension
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technically very difficult and the current authors are not
aware of any echocardiographic data obtained in patients
with COPD during exercise. One can postulate a number of
different pulmonary hypertensive phenotypes depending on
the vigor of the (perhaps genetically determined) hypoxic
pressure response and the factors involved in pulmonary
vascular remodeling, which likewise may have a genetic basis.

Oxygen supplementation may act on a number of different
levels reducing the exercise-induced pulmonary hypertension:
oxygen likely decreases dyspnoea perhaps decreasing the
respiratory rate during exercise allowing for a better emptying
of the lung and less auto-positive end-expiratory pressure,
and it may decrease the sympathetic tone (fig. 1).

Clotting and thrombosis in chronic obstructive
pulmonary disease

As already stated the pulmonary arteries in COPD are
characterised by endothelial cell dysfunction; cytokines like
interleukin (IL)-1, and IL-6 have been shown to be increased
in the plasma of patients with COPD. These, and in addition
oxidative stress and C-reactive protein may affect endothelial
cell function and render the endothelium a more thrombo-
genic surface. In fact a hypercoagulable state has been
described in patients with COPD [23, 24]. There appears to be
an increased frequency of deep venous thrombosis and pul-
monary embolism in acute exacerbations of COPD [24, 25],
and histopathologically thrombotic lesions were detected in
lung tissue from patients with severe emphysema undergoing
lung-volume reduction surgery [26]. Apparently, the fre-
quency of venous thrombosis is increased during exacerba-
tions of COPD. Clearly the clotting and embolism aspects of
COPD, especially during an exacerbation, require further
focused investigations. The inflammatory aspects of the so-
called COPD exacerbation may trigger a hypercoagulable
state and increase the risk of thrombosis. Some post mortem
studies indicate that a considerable number of patients dying
with COPD have pulmonary embolic events. Should indeed
a hypercoagulable state, or pulmonary embolism or in situ

thrombosis be frequent events in patients with severe COPD,
perhaps associated with the so-called exacerbations of COPD,
then anti-coagulation of patients with COPD could be an
important therapeutic modality.

Pathohistology

Figure 2 lists the most frequently encountered lung vas-
cular alterations in COPD. It is very important to point out
that vascular abnormalities are not a late, end stage finding,
but as demonstrated by BARBERA et al. [2], accompany even
mild obstructive lung disease. Muscular arteries are infiltrated
by inflammatory cells including lymphocytes [27] and when
examined ex vivo display a decreased expression of their
endothelial cell nitric oxide synthase [28] and impaired endo-
thelial cell-dependent vasodilation [29, 30, 31]. T-cell cyto-
kines may activate proteolytic pathways; lymphocytes may
attach to endothelial cells and destroy them. Inflammation
may be driven by activation of the nuclear factor (NF)-kB
since it has been shown that cigarette smoke condensate
activates NF-kB, destroys an inhibitor of NF-kB called IkBa
and increases cycloxygenase 2 gene expression [32], of interest,
surfactant protein D regulates NF-kB and matrix metallo-
proteinase production in alveolar microphysiology [33].
Whereas a better description of the pathology of the small
airways and small vessels in COPD is still needed, the dis-
section of disease mechanism requires the study of animal
models.

Vascular changes in animal models of hypoxia-induced
pulmonary hypertension

"To understand pulmonary hypertension we must under-
stand the structural remodeling caused by the original injury,
by adaptation to this injury and to established pulmonary
hypertension," REID and DAVIES [34].

In the twentieth century pulmonary hypertension was based
on contemporary concepts pathophysiologically explained by
vasoconstriction. Pathologists saw the crenated elastic laminae
of the pulmonary arteries and concluded that vasoconstric-
tion of the lung vessels must indeed have been severe and
caused the structural changes. However, eventually mitogen-
esis and cell proliferation became recognised "Proliferation
of vascular cells is a feature of all types of pulmonary
hypertension. Proliferation can occur as part of the original
injury – that is, mitogens are released as part of the acute
damage – it may be part of the repair process or of the
adaptation that occurs when pulmonary hypertension is
established" [34]. For many decades investigators have used

Table 1. – Factors, which affect pulmonary artery pressure at
rest

Vasoconstriction (hypoxic and nonhypoxic) [14–17]
Lung vessel loss [18, 19]
In situ thrombosis [20]
Polycythaemia
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Fig. 1. – Factors which affect pulmonary artery pressure with exercise.
PEEP: positive end-expiratory pressure.
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Fig. 2. – Lung vascular abnormalities in chronic obstructive pulmo-
nary disease.
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animals exposed to chronic hypoxia, hypobaric or not, to
investigate the mechanisms of pulmonary vascular remodel-
ling. Because patients with COPD are frequently hypoxic and
hypoxaemic, chronic hypoxia exposure animal models con-
tinue to be used with the assumption that the information
gathered can be translated to the human condition of COPD.
But it must be asked which human disease or what aspects of
human disease are being modelled [35]. Indeed muscularisation
of precapillary arterioles and loss of pulmonary capillaries, as
shown by a loss of the "background haze" by angiography
occurs in rat models of chronic hypoxic pulmonary hyper-
tension [34, 35]. The thickening of the media of precapillary
arterioles in chronic hypoxia exposure models has originally
been attributed to vasoconstriction resulting in a form of
work hypertrophy. Muscularisation of precapillary arterioles,
normally not endowed with thick layers of muscle cells and
therefore normally not contractile, was explained by migra-
tion of smooth muscle cells. An alternative view is that the
immediate adaptive response of the stressed precapillary
arterioles is really a response of endothelial cells which trans-
differentiate into smooth muscle cells [36–37]. Although the
hypoxia-exposure animal models lack the airway disease
component of COPD and the inflammatory cells, which are
present in the COPD lungs, hypoxia activates cytokines and
generates features of inflammation in the lung parenchyma
[38, 39].

Vascular changes in animal models of emphysema

Vascularisation of arterioles has been described in chronic
cigarette smoke exposed guinea pigs [40] yet little attention to
the vascular morphology has been paid in the description of
many of the recently developed mouse emphysema models
[41, 42]. KASAHARA et al. [43] recently described apoptosis of
alveolar septae and vascular endothelial cells in the lungs
from patients with emphysema and also decreased expression
of the vascular endothelial growth factor vascular endothelial
growth factor (VEGF) and the VEGF receptor II KDR. To
explore the hypothesis that impaired VEGF signalling causes
alveolar septal cell apoptosis and emphysema, a rat model
had been developed [44] and indeed it could be shown that
chronic blockade of VEGF receptors causes septal cell apop-
tosis, results in emphysema and lung capillary loss and causes
some degree of pulmonary hypertension [44].

The current authors believe that important insights can
be gathered from this model and new hypotheses can be
developed. This non-inflammatory model of emphysema sup-
ports the concept that VEGF is an obligatory survival factor
[45] for lung micro-vascular endothelial cells, and perhaps
other lung cells [46]. The current authors also believe that the
abundance of expression of VEGF in the lung [39, 47] is to a
large measure explained by the immense number of capillary
endothelial cells, which generate and secrete VEGF, which
they need to survive. This makes VEGF a strong player in a
team of lung structure maintenance factors [43, 44].

This model of VEGF receptor blockade-triggered emphy-
sema has now been subjected to three different prevention
trials. First the present authors showed that a broad-spectrum
caspase inhibitor prevented the VEGF receptor blockade-
induced emphysema indicating that indeed apoptosis of
alveolar septal cells caused emphysema [44]; second it was
shown that chronic treatment with a superoxide dismutase
mimetic prevented emphysema in this model [48] and more
recently that i.v. injection of VEGF receptor blocked animals
with a-antitrypsin prevented emphysema development [49].
This indicates that oxidative stress and protease(s) activity
[49, 50] become unbalanced when effective VEGF signal

transduction is impaired. Caspases are cysteinyl aspartate-
specific proteases and are activated by proteolytic processing
of aspartic residues, and caspases can do double duty as
elastases. Finally, the fact that apoptotic cells can be observed
at all in the emphysematous lungs may indicate that on a
cellular level there is also a phagocytosis failure, i.e. impair-
ment of engulfing and removing of dead cells [51, 52]. VEGF
may also be involved in effective phagocytosis and apoptotic
cell clearance.

The current authors take the view that VEGF receptor
signalling which results in endothelial cell prostacyclin and
nitric oxide production [53] is critically involved in the
structure maintenance of the lung microvessels. If so, then
emphysema is also a vascular disease [18, 54], VEGF is abund-
antly expressed in the lung tissue [55] in vascular smooth
muscle cells [56], its expression is induced by IL-1 [57] and
IL-6 [47], VEGF increases the expression of superoxide
dismutase in endothelial cells [58] and protects them against
oxidative stress, perhaps also the endothelial cells of the sys-
temic vasculature. It is of interest that a1-antitrypsin treatment
of adult rats prevents the development of VEGF-receptor
blockade-induced lung capillary loss [50]. The current authors
also believe that endothelial cells and vascular smooth muscle
cells form a "functional" syncytium [36], yet the intricate inte-
ractions on a molecular level between growth factors [59–63],
haemodynamic variables, vascular injury [64], hypoxia [36,
65, 66] proteases [49, 67] and control of apoptosis [43, 49], and
how they affect the so-called vascular remodelling, are still
largely unclear.

Therapeutic considerations and recommendations

What is it about the vascular component in chronic
obstructive pulmonary disease that may require treatment?
This question is posed in the context of D. Flenley9s pro-
vocative statement that "COPD patients die with cor
pulmonale but not of cor pulmonale" [68] and the observation
of many clinicians that long-term oxygen treatment has
dramatically decreased the incidence of cor pulmonale [7, 69,
70]. Indeed the emphasis and focus of treatment strategies
may shift towards prevention of exacerbations of chronic
obstructive pulmonary disease, and address anticoagulation
in order to prevent embolism and in situ thrombosis [63]. New
strategies need to be developed; those should be designed and
directed to break the cycle of inflammation, proteolysis,
oxidative stress and apoptosis, [71] since it is this vicious cycle,
which plays out in the small airways and adjacent lung
vessels. Prevention of chronic obstructive pulmonary disease
progression also entails prevention of the ongoing loss of lung
capillaries. Perhaps protease- and apoptosis-inhibiting drugs
may accomplish this.
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