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ABSTRACT: The development of occupational asthma (OA) is likely to result from the
complex interaction of environmental and host factors. This article addresses a series of
issues relating to the multiple environmental factors that could affect the initiation of
OA, including the intrinsic characteristics of causative agents, as well as the influence of
the level, mode and route of exposure.

Although the clinical and pathological features of OA caused by low molecular
weight agents resemble those of immunoglobulin (Ig)E-mediated asthma, the failure to
detect specific IgE antibodies against most of these agents and/or poor association with
disease status have resulted in intense speculation about alternative or complementary
physiopathological mechanisms leading to airway sensitisation.

In this contribution, the roles of specific immunoglobulin E and G antibodies, cell-
mediated immunity and inflammatory effector cells are critically reviewed. Recent
advances in the characterisation of the molecular interactions between chemical
sensitisers and human airway proteins provide promising avenues for elucidating the
immunological basis of occupational asthma caused by low molecular weight agents.
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There is a general agreement that inhalation of agents at
the workplace can induce the development of "immunologi-
cal" as well as "nonimmunological" asthma [1-3]. The former,
which will hereafter be conveniently referred to as occupa-
tional asthma (OA), arises after a latency period of exposure
that is necessary for acquiring immunological sensitisation
(whatever the underlying immunological mechanism), and
asthma reactions recur on re-exposure to the causal agent at
concentrations not affecting other similarly exposed workers.
These clinical features of "allergic hypersensitivity" [4, 5]
differentiate OA that is characterised by the presence of specific
bronchial hyperresponsiveness to occupational agents, from
nonimmunological asthma resulting from acute exposure(s) to
high concentrations of irritants, often labelled "reactive
airways dysfunction syndrome" or "irritant-induced asthma".

Extensive lists of the several hundreds of agents causing OA
have been published [6-8] and are available on websites.
These agents are somewhat arbitrarily, though conveniently,
categorised into high molecular weight (HMW) and low
molecular weight (LMW) agents according to whether their
molecular weight is above or below 1 kD. HMW agents are
(glyco)proteins from animal and vegetal origin acting through
an immunological immunoglobulin (Ig)E-mediated mechan-
ism. LMW agents include a wide variety of organic and
inorganic compounds for which an IgE-mediated mechanism
has not been consistently identified, although some of them
(namely acid anhydrides, platinum salts and reactive dyes) are
usually associated with the production of specific IgE antibodies.
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This article will first examine the current understanding of
the environmental factors that determine the inception of
immunological OA in the perspective of focusing on recent
advances and unresolved questions. Secondly, it will address a
series of challenging issues pertaining to the pathophysiolo-
gical mechanisms involved in the development of OA.

Environmental determinants of occupational asthma

The development of OA results from a complex interaction
between environmental factors and individual susceptibility.
The latter is specifically addressed in a separate contribution
to this series [9]. Environmental factors that are potentially
involved in the initiation of OA include the intrinsic
characteristics of occupational agents, as well as the level,
mode, and route of exposure at the workplace.

Nature of the causative agent

High molecular weight agents. In recent years, molecular
cloning and modelling techniques have generated several
hypotheses regarding the structural and functional charac-
teristics of protein allergens that could determine their intrinsic
potential for eliciting IgE-mediated sensitisation [10, 11].
Theoretically, structural features, biological activity, and
mimicry with human proteins could be involved in protein
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allergenicity. To date, however, three-dimensional analysis
of allergens has failed to characterise common molecular
moieties that induce immunological sensitisation or to identify
structural features that differentiate allergenic from
nonallergenic proteins. In contrast to common inhalant
allergens, resistance to degradation may be important for
some occupational allergens, which may be altered by physical
or chemical agents during industrial or manufacturing
processes. This is best illustrated by the persistence of
allergenic epitopes derived from Hevea braziliensis in
natural rubber latex despite treatment with ammonia and
vulcanisation at 100-120°C [12]. Conversely, a number of
studies have raised the hypothesis that biological activity of
allergens could contribute to their allergenicity.

Allergens have diverse biological functions, including
enzymatic activities, enzyme inhibition, ligand binding,
storage, plant defence against pathogens, and structural
proteins. Most characterised allergens in mammalians are
ligand-binding proteins (i.e. lipocalins or calycins), including
allergens from cat (Fel d3), dog (Can f1, Can f2), cockroach
(Bla g4), mouse (Mus ml), rat (Rat nl), cow (Bos d2, Bos d5
or B-lactoglobulin), and horse (Equ cl, Equ c2). Despite low
amino acid homology, these proteins show the same
characteristic lipocalin folding that can bind small hydro-
phobic molecules, such as pheromones, steroids and retinoids.
There is growing evidence that enzymatic activity may
potentiate allergenicity by facilitating transepithelial allergen
delivery through disruption of tight junctions [13] and by
stimulating IgE [14]. These data could support the observa-
tion that enzymes are a common cause of OA in a wide
variety of occupations, for instance in detergent powder
manufacture (e.g. alcalase, esperase) [15] or in the baking
industry (e.g. fungal a-amylase) [16]. In addition, among the
few allergens that have been characterised in plant-derived
products causing OA, a substantial number show enzymatic
activity, such as the polyisoprene elongation factor (Hev bl)
and B-1,3-glucanase (Hev b2) in natural rubber latex [12] or
acyl-coenzyme A oxidase and fructose-biphosphate aldolase
in cereal flour [17]. Nevertheless, enzymatic activity is not a
prerequisite for allergenicity, since both enzyme inhibitors
(e.g. P-amylase inhibitors in wheat flour, soybean trypsin
inhibitor) and inactive enzymes (e.g. Bla g2, an inactive
aspartate proteinase) can be potent allergens [11, 17, 18].
Finally, partial molecular homology of some allergens with
human proteins could alter the mechanisms of self-tolerance.
For instance, some endogenous lipocalins, such as retinol-
binding protein, apolipoprotein D, and von Ebner’s gland
salivary protein, are homologous to exogenous lipocalin
allergens. Although attractive, this hypothesis has not yet
been formally substantiated.

Low molecular weight agents. In contrast to protein allergens,
LMW agents are incomplete antigens (i.e. haptens) that must
bind to carrier macromolecules to become immunogenic.
Although new LMW agents are continuously recognised as
inducing OA, only a minority of the thousands of LMW agents
used in modern industry have demonstrated asthmagenic
potency. It has long been recognised that LMW agents causing
OA are typically highly reactive electrophilic compounds that
are capable of combining with hydroxyl, amino and thiol
functionalities on airway proteins [19]. Quantitative structure/
activity relationship models have recently contributed to
further characterising the structural and physicochemical
properties that determine the potential for inducing respiratory
sensitisation [20-22]. These characteristics include the capacity
to form at least two bonds with human proteins [21] and the
agent’s potential for chemical binding, as reflected by Hansen
polarity and hydrogen-bond acceptance [22]. These models

have identified a number of "structure alerts" that are
associated with a high risk of respiratory sensitisation,
including the isocyanate functionality (N=C=0), primary
and secondary amines, substituted aromatic moieties,
dicarboxylic acid anhydrides, and dialdehydes [20, 21].

KAROL [23] has dedicated great effort to identifying
the sites and target macromolecules of LMW agents adduc-
tion. In vitro experiments indicate that diisocyanates coloca-
lise to ciliary tubulin in human lung epithelial cell lines [24]
and react predominantly with keratin 18, actin, trans-
1,2-dihydrobenzene-1,2-diol dehydrogenase, and a 78-kD
glucose-regulated protein involved in the trafficking of
damaged proteins [25, 26]. Following in vivo exposure of
human subjects, the predominant diisocyanate-conjugated
protein is keratin 18 in bronchial biopsies and albumin in
bronchoalveolar lavage fluid [26]. Importantly, these experi-
ments have shown that diisocyanate-conjugated epithelial
proteins stimulate the proliferation of peripheral blood
mononuclear cells (PBMCs) from subjects with diisocyanate-
induced OA but not those from nonasthmatic subjects occu-
pationally exposed to isocyanates nor those from subjects with
atopic asthma of nonoccupational origin [25]. In vitro experi-
ments have also demonstrated that diisocyanates combine
with intracellular glutathione [27, 28]. The thiol adducts can
be transferred to other nucleophilic proteins, suggesting the
possibility of regeneration of the reactive chemicals at sites
distant from the initial reaction through a "thiol shuttling"
mechanism [27].

GRIFFIN et al. [29] have recently developed a monoclonal
antibody that detects trimellitic anhydride irrespective of the
carrier protein. In vitro incubation of this monoclonal
antibody with a lung epithelial cell line revealed that
trimellitic anhydride binds to >10 proteins with molecular
weights ranging 20-35 kD. It is likely that the development of
such hapten-specific monoclonal antibodies would greatly
enhance the understanding of the complex interactions
between LMW reactive chemicals and lung proteins, and that
it would enable the identification of antigenic determinants
involved in the pathogenesis of OA caused by these agents.

Level of exposure

There is now compelling evidence of a dose/response
relationship between the level of exposure to occupational
agents and the development of IgE-mediated sensitisation
and/or work-related respiratory symptoms for agents acting
through an IgE-mediated mechanism, such as flour, fungal
a-amylase, laboratory animal proteins, detergent enzymes,
platinum salts and acid anhydrides [30, 31]. The recognition
of this relationship has been greatly enhanced by the
development of immunoassay techniques for measurement
of airborne allergens and by the implementation of prospec-
tive cohort studies [32-34]. An exposure/response gradient has
also been substantiated indirectly for OA caused by
diisocyanates [35, 36], although there is some suggestion
that peak exposures could be more relevant for the initiation
of diisocyanate-induced OA than for the cumulative dose of
exposure [37].

Epidemiological studies have demonstrated that the level
of exposure is the most important determinant of OA and,
by implication, that preventive measures aimed at reducing
workplace exposure to sensitising agents should be the most
effective approach for reducing the burden of OA. For most
occupational agents, however, the shape of exposure/response
relationships remains largely uncertain. More specifically,
little is known regarding the risk of sensitisation at low
concentrations and the existence of a "no-effect level" [38].
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Available information indicates that IgE-mediated sensitisa-
tion is unlikely to occur at concentrations <0.5 mg-m™ for
flour dust [38-40], 0.25 ng-m™ for fungal a-amylase allergens
[16], 0.7 pg'm™ for urinary rat allergens [32], and 0.6 ng-m™
for natural rubber latex allergens [41]. However, application
of these data for setting occupational exposure standards is
still hampered by the lack of standardisation of immunoassay
techniques for quantitative assessment of airborne protein
allergens. The opposite part of the dose/response curve may
also be contentious. Thus, there is some evidence among
laboratory animal workers that those with the highest
exposure to rat urinary allergens have a lower risk of
developing IgE-mediated sensitisation [33]. These findings
are consistent with what has been described for domestic
exposure to pets, particularly among young children [42]. This
apparent protective effect of high-level exposure could result
from high-dose immunological tolerance to allergens asso-
ciated with a modified T-helper type-2 (Th2) cell response
[43].

Exposure/response relationships may also be affected by
individual susceptibility and timing of exposure. Genetic
susceptibility markers seem to be stronger determinants of
sensitisation to occupational agents at low levels of exposure
to occupational agents [44], while the effect of atopy is
independent from exposure level [33]. The incidence of
immunological sensitisation and work-related symptoms is
consistently higher within the early period of exposure to
occupational agents [33, 45-47], and exposure/response
gradients are more clearly documented in those workers
who develop these outcomes soon after the onset of exposure
[33, 48]. These findings indicate that the level of exposure at
critical time points may be more relevant to the development
of OA than cumulative doses of exposure or current levels of
exposure at the time of investigation.

Mode of exposure

Differences in the mode of exposure to the same HMW
agent may result in different patterns of IgE responses. In
asthma epidemics caused by soybean dust released during
soybean unloading into harbour silos, citizens became
sensitised to Gly ml and Gly m2, which are proteins with
an LMW (7-8 kD) concentrated in the hull, while bakers are
sensitised predominantly to allergens with a HMW that are
present both in soybean hull and flour [49]. It has also been
reported that workers may develop specific airway reactivity
directed against one but not the other forms of an LMW
chemical (e.g. vapours of isocyanate monomers versus
aerosols of isocyanates prepolymers, formaldehyde resin dust
versus gaseous formaldehyde) [50, 51]. However, the extent to
which physicochemical properties of occupational agents, such
as size and solubility, may influence the pattern of airway
deposition and, consequently, the potential for inducing
airway sensitisation has not been investigated extensively.

There is accumulating evidence that environmental pollu-
tants, such as ozone, sulphur dioxide, tobacco smoke and
diesel exhaust particles, can potentiate immune responses to
common inhalant allergens. Animal and human experiments
have shown that respiratory irritants can enhance allergic
airway inflammation and pre-existing IgE response to
allergens in the human respiratory tract [52]. In addition,
recent studies indicate that irritant substances are able to
promote the initiation of IgE-mediated sensitisation to
allergens [53-55]. The mechanisms of these interactions
require further investigation, and may involve modified
antigen presentation with skewing of cytokine production
toward a Th2-like pattern.

To date, there is limited information on the potential
interactions between irritant and sensitising agents at the
workplace. Experiments in a primate model of asthma
have suggested that exposure to ozone can potentiate the
development of skin and bronchial responsiveness to
hexachloroplatinate [56]. An association between cigarette
smoking and an increased prevalence of sensitisation has
been consistently documented only for platinum salts
[57-59]. The effects of workplace exposure to irritant
substances on the inception of airway sensitisation to
occupational agents is undoubtedly a fascinating area of
investigation that could have important implications in the
field of prevention.

Nonrespiratory routes of exposure

Intuitively, inhalation is the most relevant route of
exposure for the inception and maintenance of airway
sensitisation to occupational agents. Nevertheless, recent
animal experiments support the theory that skin exposure
can initiate IgE-mediated respiratory sensitisation to allergens
[60, 61]. Epicutaneous application of a protein antigen (i.e.
ovalbumin) induces a predominant Th2-like immune response
with production of specific IgE antibodies, as well as the
accumulation of eosinophils in bronchoalveolar lavage and
the development of airway hyperresponsiveness (AHR) to
methacholine after inhalation challenge with ovalbumin [62].
Animal models of sensitisation have consistently documented
that dermal exposure to LMW agents, such as isocyanates
and acid anhydrides, can lead to a specific IgE-antibody
response and airway responses, and, in certain species, to the
production of a Th2 profile of cytokines [63-66].

Much less is known about the potential impact of skin
exposure on the initiation of OA in humans. Skin involve-
ment, either urticaria or allergic contact dermatitis, when it is
associated with OA, most often precedes the onset of asthma
symptoms [67-69]. However, the effects of dermal contact
cannot be easily differentiated from those of inhalation
exposure as both occur simultaneously. The recent identifica-
tion of type-1 keratins conjugated to hexamethylene diiso-
cyanate (HDI) after both inhalation exposure to aerosolised
HDI and skin exposure to liquid HDI in humans offers new
insights into the link between skin sensitisation to LMW
chemicals and the induction of AHR to these agents in animal
models [26]. The possible interaction between dermal and
respiratory exposures at the workplace should be further
explored, as it may have practical implications for the
implementation of preventive procedures.

Physiopathological mechanisms leading to occupational
asthma

Athough it is clear that OA induced by HMW agents is
mediated through a classical IgE-dependent hypersensitivity
mechanism, there is no such general consensus regarding OA
caused by LMW agents. For some LMW agents, notably acid
anhydrides [70], platinum salts [71, 72], and reactive dyes [73,
74], the development of OA is accompanied by the production
of specific IgE antibodies, while for most other LMW agents
the presence of specific IgE has been documented in only a
small subset of affected workers. The absence of detectable
specific IgE antibodies directed against LMW agents has led
to intense speculation about IgE-independent immunological
or even nonimmunological mechanisms.
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Table 1.—Determination of specific immunoglobulin (Ig)E and IgG antibodies in subjects with occupational asthma caused by
diisocyanates: comparison with the results of specific inhalation challenges

First author [ref.] Type of diisocyanates Subjects with Assay” Specific IgE Specific IgG
DOA/subjects tested % %
Se. Sp. Se. Sp.
BUTCHER [75] TDI 26/26 RAST 19
ZAMMIT-TABONA [76] MDI 6/11 RAST 17 80 34 60
PEZZINI [77] TDI, MDI, HDI 28/28 RAST 39
KESKINEN [78] TDI, MDI, HDI 35/35 RAST 20
CARTIER [79] TDI, MDI, HDI 29/62 ELISA 31 97 72 76
KAROL [80] TDI 34/63 RAST 3 93 3 93
TEE [81] TDI, MDI, HDI 46/70 RAST ratio >2 28 92
RAST ratio >3 20 100
PARK [82] TDI 50/63 ELISA 14 92 46 92
BERNSTEIN [83] TDI, MDI, HDI 19/54 ELISA 21 89 47 74

DOA: diisocyanate-induced occupational asthma as ascertained by specific inhalation challenge; Se.: sensitivity; Sp.: specificity; HDI: hexamethylene

diisocyanate; MDI: diphenylmethane diisocyanate; TDI: toluene diisocyanate.

#. specific IgE antibodies binding to diisocyanates conjugated to

human serum albumin have been assessed using either radioallergosorbent test (RAST) or enzyme-linked immunosorbent assay (ELISA), while

specific IgG antibodies were determined using ELISA technique.

Specific immunoglobulin E antibodies

Binding of specific IgE antibodies to hapten conjugated
with human serum albumin (HSA) has been reported in a low
proportion of workers with ascertained OA caused by most
LMW agents, including diisocyanates (0-39%) [75-83]
(table 1), plicatic acid derived from western red cedar (44%)
[84], glutaraldehyde (31%) [85] and cobalt (50%) [86]. The
presence of specific IgE antibodies to LMW agents conjugates
generally shows a very high specificity for OA (table 1),
although they can be found in asymptomatic exposed workers
[87, 88]. Interestingly, a recent follow-up study of workers
exposed to trimellitic anhydride showed that specific IgE
antibodies may precede the development of OA [89].

The absence of demonstrable specific IgE antibodies in
subjects with OA caused by LMW agents could result from a
number of methodological limitations. Indeed, the innate
chemical reactivity of most LMW agents has largely
hampered the investigation of immunological mechanisms,
owing to uncertainty about the antigens that elicit immuno-
logical responses. It has been assumed that LMW agents act
as haptens that are presented to the human immune system
after conjugation with carrier proteins. The interaction of
LMW reactive agents with human proteins may produce
immunogenic epitopes that are related both to the LMW
agent itself and to new antigenic determinants resulting from
conformational changes of the carrier protein. It has been
shown that assessment of specific IgE antibodies directed
against LMW agents conjugated to HSA is affected by the
conditions used for preparing hapten conjugates [90, 91]. The
sensitivity in detecting specific IgE against LMW agents may
be affected by the interval between assessment and last work-
place exposure. The levels of specific IgE against LMW agents
decline after cessation of workplace exposure with half-life
estimates ranging from 6 months to 4 yrs for diisocyanate-
specific IgE antibodies [81, 92]. Most importantly, immuno-
logical studies have to date focused on the antigenicity of
LMW agents conjugated to HSA, however, it is now estab-
lished that LMW chemicals can combine with a variety of
airway proteins [25, 26, 29]. Accordingly, the role of specific
antibodies needs to be re-examined using LMW agents
conjugated to human proteins other than HSA, such as epi-
thelial cell proteins, which may represent more biologically
relevant antigens.

Finally, it should be considered that if OA caused by LMW

agents results from IgE-dependent mechanisms in a small
subset of affected subjects and from IgE-independent
mechanisms in the other subjects, it would be reasonable to
expect differences in clinical manifestations between these two
subsets. To date, studies have failed to identify differences in
the pattern of asthmatic reactions or other clinical features
between subjects with and without IgE, with the slight
exception that the presence of specific IgE against diisocya-
nates could be associated with a less severe outcome [93].

Specific immunoglobulin G antibodies

A number of studies have reported that IgG antibodies
against diisocyanate-HSA conjugates are more sensitive,
though less specific, than IgE antibodies in identifying OA
when compared with the results of specific inhalation
challenges (table 1) [76, 79, 82, 83]. High levels of specific
IgG to diisocyanates at the time of diagnosis have been
associated with a more severe outcome of asthma in a 5-yr
follow-up study of workers with OA caused by toluene
diisocyanate [94]. These findings, however, cannot be
regarded as definitive evidence supporting a pathogenetic
role of IgG antibodies in OA due to LMW agents. Indeed,
most workforce surveys have found that the presence of
specific IgG antibodies is associated with the level of exposure
rather than with work-related respiratory symptoms among
workers exposed to diisocyanates [88, 95-97] and acid
anhydrides [98, 99]. Specific IgG, antibodies directed against
LMW agents have been assessed by several investigators who
found that the presence of this class of antibodies reflects
exposure alone and is not associated with the presence of
work-related respiratory symptoms [87, 99]. Only one study
[98] has documented an association between the presence of
specific 1gG, against phthalic anhydride and work-related
asthma, while specific IgG antibodies correlated with the level
of workplace exposure. Investigation of specific IgG and IgGy
in workers exposed to HMW agents provided broadly similar
results, since the levels of these antibodies correlated with
estimates of exposure to rat allergens [100], wheat flour [101]
and grain dust [102], but not with the presence of work-
related symptoms. There was an association between specific
IgG and/or 1gG,4 antibodies and specific IgE among workers
exposed to reactive dyes [103], citrus red mite [104] and grain
dust [102].
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These data are consistent with those reported in asthma
caused by common inhalant allergens. Specific IgG antibodies
to common allergens (e.g. dust-mite allergens) usually
correlate with the level of exposure and are most often
associated with specific IgE antibodies [43, 105]. The presence
of specific IgG antibodies in the absence of IgE antibodies
may, however, be found when there is a strong antigenic
stimulus, such as that associated with high-level exposure to
cat allergens in children or with immunotherapy [43, 105],
where IgG and IgG, could play a protective effect. Taken
collectively, available data do not indicate that IgG antibodies
play a significant role, either offending or protective, in the
pathogenesis of OA caused by LMW agents.

Cell-mediated immunity

Several lines of evidence indicate that T-cells are involved in
the pathogenesis of OA caused by LMW. In animal
experiments, sensitisation to diisocynates can be transferred
by injection of lymphoid cells [106], while AHR and
pathology changes do not develop in athymic mice [107].
Studies of workers with diisocyanate-induced OA have found
that the expression of VB 1 and VB 5 gene segment is
decreased at baseline in PBMCs and increases selectively
after in vitro incubation with diisocyanate-HSA conjugates
[108]. These findings suggest that antigen-specific T-cell
subpopulations may be sequestred in the lungs of workers
with diisocyanate-induced OA and clonally expand after
exposure to the causative agent. Upon in vitro stimulation
by diisocyanate-HSA conjugates, PBMCs from workers
with diisocyanate-induced OA show a proliferative response
[25, 108], although hapten-specific proliferative responses
of PBMCs are inconsistently detected in subjects with OA
caused by LMW agents [109, 110], are also found in
asymptomatic exposed workers [88], and are absent in OA
caused by LMW agents other than isocyanates, such as
plicatic acid from red cedar [111]. In addition, when hapten-
specific proliferative response is present, its magnitude is
significantly smaller than that induced by common inhalant
allergens [108]. In vitro experiments have also reported that
PBMCs of workers with diisocyanate-induced OA demon-
strate a hapten-specific production of histamine-releasing
factor [112, 113] and the release of monocyte chemoattractant
protein-1, interleukin (IL)-8, tumour necrosis factor (TNF)-a,
and interferon (IFN)-y [114]. However, it remains to be
established whether LMW agents are capable of inducing a
direct, IgE-independent, hapten-specific activation of PBMCs.

Bronchial biopsy specimens from subjects with atopic
asthma, nonatopic asthma, and OA caused by LMW agents
show a broadly similar pattern of inflammatory cell infiltrate
in the airways, including mast cells, eosinophils and activated
lymphocytes [115-118]. Immunopathological studies of work-
ers with diisocyanate-induced OA have, however, revealed
several features suggesting that different physiopathological
processes could be involved. Most T-lymphocyte clones
derived from bronchial biopsies of atopic asthmatics are
CD4+ with a Th2 pattern of cytokine production, while in
diisocynate-induced OA, the majority of lymphocytes repre-
sent CD8+ T-cells [119] and fail to demonstrate a definite
pattern of Th1 or Th2 cytokine profiles. T-cell clones derived
from bronchial mucosa of subjects with OA caused by LMW
agents produce IL-5 and IFN-y, but not IL-4 [119-121],
although the number of cells expressing 1L-4 and IL-5
increases after in vivo exposure to diisocyanates [120]. These
somewhat disappointing findings should, however, be exam-
ined in light of the increasingly accepted concept that the
pattern of cytokine production by human T-cells is more

heterogeneous than that found in mice. It is now becoming
apparent that CD8+ T-cells may participate in the process of
asthma and exhibit Thl and Th2 phenotypes, with the Th2
phenotype producing IL-5 or both IFN-y and IL-5 [122, 123].

Findings in animal models of sensitisation to LMW agents
are affected by the sensitisation and challenge protocols. In a
mouse model of sensitisation through subcutaneous injection
of toluene diisocyanate, TNF-o appeared to play a pivotal
role in the production of Th2 cytokines in airway tissues,
independently from specific antibody levels [107, 124]. Dermal
sensitisation to toluene diisocyanate in mice resulted in the
production of Thl-type IFN-y and Th2-type cytokines (IL-4,
-5 and -13), although only Th2 cytokines were important for
the development of airway eosinophilia. These results were in
contrast to the markedly Th2-skewed cytokine profile induced
by protein allergens, such as ovalbumin [65]. Using a mouse
model of dermal sensitisation, DEARMAN and KIMBER [64]
have shown that LMW agents causing OA in humans (i.e.
acid anhydrides, diisocyanates and platinum salts) are
associated with selective Th2 responses characterised by the
production of IL-4 and IL-10 by draining lymph-node cells.
By contrast, chemicals causing only allergic contact dermatitis
induce a predominant Thl pattern of cytokines associated
with high levels of IFN-y.

Nonimmunological mechanisms

In vitro experiments have shown that diisocyanates, and
presumably other reactive LMW agents, have a variety of
pro-inflammatory effects. Diisocyanates can induce intracel-
lular glutathione deficiency [27, 28], which may induce the
activation of mitogen-activated protein kinase and the
production of RANTES (regulated on activation, T-cell
expressed and secreted) [125]. Exposure to diisocyanates is
associated with increased levels of intracellular peroxide
and the expression of intercellular adhesion molecule-1 in
monocytic cell lines [126]. The production of reactive oxygen
species could contribute to tissue damage, and the upregula-
tion of adhesion markers on monocytic cells could
potentiate the infiltration and adhesion of inflammatory
cells at the site of exposure to diisocyanates [126]. It has also
been shown that diisocyanates can exert a bronchoconstrict-
ing effect on bronchial smooth muscle and trigger neurogenic
inflammation through the activation of the efferent function
of capsaicin-sensitive sensory nerves and the inhibition of
neutral endopeptidase [127, 128]. These effects have, however,
been documented only in experimental models using high
concentrations of diisocyanates. The relevance of these
mechanisms in the pathogenesis of OA can be questioned,
since they cannot account for the clinical manifestations of
"allergic hypersensitivity" [4, 5] that are characteristic features
of this condition. Nevertheless, it is conceivable that
nonimmunological mechansims could play an indirect role
in the development of OA by amplifying immunological
responses to LMW agents, especially in susceptible indivi-
duals [129, 130].

Airway inflammation

It is almost universally accepted that eosinophils represent
central inflammatory effector cells involved in the develop-
ment of the AHR and variable airflow obstruction that
characterise asthma [122]. However, investigations of broncho-
alveolar lavage and induced sputum in subjects with OA have
provided more controversial findings. Some of these studies
have reported increased numbers of eosinophils at baseline
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[131] with a further increase after exposure to various causa-
tive agents at work [132] or in the laboratory [133-136]. Other
studies have described an increase in neutrophil chemo-
tactic activity associated with recruitment and activation
of neutrophils during asthmatic reactions provoked by
diisocyanates [137-139]. Neutrophilic inflammation with
concomitant changes in AHR has also been reported in one
subject exposed to metal working fluids at the workplace
[140]. In addtion, D1 FrRANcO et al [141] found more
neutrophils and fewer eosinophils in the sputum of subjects
with OA caused by LMW agents than in that of subjects with
HMW agent-induced OA or non-OA. LEMIERE et al. [142]
documented increases in both eosinophils and neutrophils in
sputum after asthmatic reactions induced by LMW and
HMW agents, and these cellular changes occurred indepen-
dently from the temporal pattern of asthmatic reactions.
Sputum neutrophilia, however, was observed more frequently
after challenge exposure to diisocyanates, even at very low
concentrations [143]. A recent study by ANEES et al [144]
suggested that OA caused by LMW agents could be
differentiated into eosinophilic and noneosinophilic variants,
with the latter predominating, although both groups had
sputum neutrophilia. Eosinophilic inflammation was asso-
ciated with a greater severity of the disease and a greater
bronchodilator reversibility but not with the magnitude of
work-related changes in peak expiratory flow rates. In this
study, one-half of the subjects diagnosed as having "non-
eosinophilic OA" failed to demonstrate significant AHR to
methacholine, suggesting that the noneosinophilic variant of
OA may be related, at least in part, to a nonspecific "irritant"
effect. Indeed, neutrophilic airway inflammation can be
triggered, even in nonasthmatic subjects, by a variety of
environmental exposures, including bacterial endotoxins,
particulate air pollution and ozone.

Collectively, these findings indicate that neutrophils are
involved in OA, perhaps more frequently, but not exclusively,
when OA is provoked by LMW agents. These data appear to
contrast with the "eosinophilic dogma" in asthma. However, a
recent review has also questioned the central role of
eosinophils in non-OA by outlining that ~ 50% of asthmatics
in the general population fail to show eosinophilic airway
inflammation [145]. Interestingly, noneosinophilic asthma is
most often associated with increased numbers of neutrophils
and high IL-8 levels. Such a neutrophilic inflammation occurs
not only in severe asthma or during asthma exacerbations but
also in mild and moderate asthma, as well as after inhalation
challenges with common inhalant allergens. Thus, neutrophils
appear to be involved in the pathophysiology of asthma, both
in occupational settings and in the general population, and
their role should be further delineated.

In recent years, eosinophilic inflammation of the airways
has been increasingly recognised as a cause of chronic cough
without demonstrable nonspecific AHR or airflow obstruc-
tion [146]. To date, two reports of eosinophilic bronchitis
causally related to the workplace environment have been
published [147, 148]. In one case, specific inhalation challenge
showed that cyanoacrylate was the causative agent [147]. In
the other case, chronic cough and sputum eosinophilia were
related to latex sensitisation [148]. After treatment with
inhaled steroids and latex avoidance, the cough markedly
improved and eosinophils were no longer observed in sputum
samples. Inhalation challenge test with latex reproduced the
cough and sputum eosinophilia. Although the pathophysio-
logical mechanisms and long-term implications of "occupa-
tional eosinophilic bronchitis" need to be clarified further, this
entity should be considered as a variant form of OA [3].

Conclusions and perspectives

Understanding the pathogenesis of OA is a crucial step
toward optimal prevention and management of the condition.
In this respect, identifying the structural and biological
characteristics that determine the potential for inducing
airway sensitisation is fundamental to the implementation
of primary preventive strategies. A body of epidemiological
evidence has accumulated to support a dose/response relation-
ship between the level of exposure to HMW agents and the
development of OA, although application of this information
to the determination of exposure limits in the workplace will
require the standardisation of assessment methods. Further
research is needed to clarify the impact of nonrespiratory
routes of exposure and concomitant exposure to pollutants in
the workplace.

The pathogenesis of occupational asthma caused by low
molecular weight agents remains largely uncertain, since the
innate chemical reactivity of these agents has obscured the
investigation of immunological mechanisms. Available data
suggest that T-cell subset and cytokine profile involved in
occupational asthma caused by low molecular weight agents
may differ from those operating in atopic asthma. At present,
however, there is little direct evidence that immunoglobulin
E-independent immunological or nonimmunological mechan-
isms alone are able to account for the initiation and
perpetuation of occupational asthma. Recent advances in
the characterisation of the molecular interactions between low
molecular weight agents should lead to a re-exploration of the
nature of immunological mechanisms using more biologically
relevant antigenic determinants.
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