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ABSTRACT: The airway inflammation underlying asthma is regulated by a network of
mutually interacting cytokines. The exact functional role of each individual cytokine in
the pathogenesis of the disease remains to be fully established.
Type 2 T-helper cells are currently considered to play a crucial role in this process.

In vivo animal data suggest a sequential involvement of interleukin (IL)-4 and IL-5 in
the induction of allergen-induced airway changes. The potential role of other type 2
T-helper cell-like cytokines in asthma is increasingly being recognized. In particular,
IL-4 and -13 display a large degree of redundancy. Whereas IL-4 seems to be crucial in
the primary allergen sensitization process, IL-13 might be more important during
secondary exposure to aerosolized allergen. Animal models also indicate that T-cell-
derived cytokine production, rather than eosinophil influx or immunoglobulin-E
synthesis, is causally related to altered airway behaviour.
An important aspect when evaluating the functional role of cytokines in a complex

disease such as asthma is the interaction with other cytokines in the microenvironment.
Increased expression of pro-inflammatory cytokines such as tumour necrosis factor-a
can further enhance the inflammatory process, and is increasingly linked to disease
severity. In addition, decreased expression of immunoregulatory cytokines, including
interleukin-12, interleukin-18 or interferon gamma could also strengthen the type 2
T-helper cell-driven inflammatory process.
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Asthma is currently considered and defined as a
chronic inflammatory disorder of the airway mucosa
[1]. The pathogenesis of the disease process can be
regarded as a two-step phenomenon. The first step
consists of sensitization to an aeroallergen, which
involves the preferential development of antigen-
specific T-helper (Th) cells type 2. The second step,
which does not occur in all atopic individuals,
consists of targeting the Th2-driven allergic inflam-
mation to the lower airways. This inflammatory
process is orchestrated and regulated by a com-
plex network of mutually interacting cytokines and
growth factors, secreted not only by a range of
inflammatory cells but also from structural tissue
components, including epithelial cells, fibroblasts
and smooth muscle cells. The resulting inflamma-
tion of the airway mucosa shows signs of an acute
as well as a more chronic type of inflammation [2].
This latter phenomenon causes remodelling of the
airway wall, resulting in a number of structural altera-
tions. Biopsy studies in asthma illustrate increased
expression of an ever-increasing number of cyto-
kines. Overall, these can be grouped as Th2-like
cytokines, such as interleukin (IL)-4, -5, -9 and -13,
pro-inflammatory cytokines including tumour necro-
sis factor-a (TNF-a) and IL-1b, chemokines such as
regulated on activation, normal T-cell expressed and
secreted (RANTES), eotaxin and monocyte chemo-
tactic protein(MCP)-1, and growth factors, including

transforming growth factor-b and epidermal growth
factor (fig. 1).

Although insight into the pathophysiology of
asthma has increased substantially over recent years,
a number of issues remain to be further clarified.
These include a better understanding of the exact
functional role of each cytokine in the sensiti-
zation process and in the complex relationship
between inflammation, remodelling and altered
airway behaviour. Providing proof of the functional
importance of a given cytokine in asthma usually
follows Koch9s postulates. This means assessing
whether expression of a given cytokine is altered in
asthmatic airways, whether exogenous administra-
tion of the cytokine mimics certain features of asthma
and, finally, whether antagonizing the endogenously
released cytokine blocks allergen-induced changes
or offers clinical efficacy in ongoing asthma. The
data currently available in this respect rely largely on a
combination of descriptive human data and inter-
ventional studies conducted in in vivo animal models.
It can be anticipated that further insight into the
functional role of cytokines will result in novel
therapeutic perspectives. For some cytokines, specific
inhibitors are currently being developed for human
use. It will be interesting to see how they lead to better
understanding of the disease process in the individual
patient and allow for fine-tuning of treatment regi-
mens. This review, rather than attempting to cover all
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cytokines, focuses on a few that have been highlighted
as potential therapeutic targets.

Type 2 T-helper cell-like cytokines

Within the range of cytokines produced by Th2, IL-4
and -5 have received considerable interest to date.

Interleukin-4

IL-4 demonstrates a broad range of biological
activities. In general terms, it can be described as the
main cytokine involved in the pathogenesis of allergic
responses, at the same time downregulating acute
inflammatory changes [3]. Additional effects that seem
of particular importance for asthma include stimula-
tion of mucus-producing cells and fibroblasts, thus
also implicating IL-4 in the pathogenesis of airway
remodelling [4–6]. Inhalation of recombinant human
IL-4 has been shown to induce airway eosinophilia
and to cause some degree of bronchial hyperrespon-
siveness in atopic asthmatics [7]. In addition, bronchial
biopsy studies have confirmed increased expression of
IL-4 at both the messenger ribonucleic acid (mRNA)
and protein level in the airway mucosa of atopic and
even nonatopic asthmatics compared to nonasthmatic
controls [8–10]. IL-4 exerts its biological activities
through binding to the IL-4 receptor (IL-4R), which is
expressed on the surface of diverse cell types. The IL-4R

is a heterodimer, consisting of the IL-4-binding IL-
4Ra chain and a second chain, which is either the cc
chain (shared in common with the receptor for IL-2,
-7, -9 and -15) or the IL-13Ra chain [11, 12]. Increased
expression of the IL-4Ra chain in the epithelium and
subepithelium of asthmatic airways has been reported
[13]. Polymorphisms of the IL-4 and IL-4Ra genes
have also been related to asthma severity. In parti-
cular, the IL-4-589T allele, which has been associated
with increased IL-4 gene expression, has been found
to be a risk factor for life-threatening asthma [14].

The functional role of IL-4 has been evaluated in a
number of in vivo animal models. The present author
has developed a model of allergen (ovalbumin)-
induced airway changes in C57Bl/6 mice. In this
model, IL-4 was shown to be essential for the
development of ovalbumin-induced eosinophil influx
into the airways, immunoglobulin-E (IgE) production
and the increase in airway responsiveness [15]. More
recent studies show very similar results in mice
deficient in signal transducer and activator of trans-
cription (Stat)-6, which is considered central to the
signalling pathway for mediating the biological
responses to IL-4 [16, 17]. In the present authors9
model, mast cell-deficient mice still develop airway
eosinophilia in response to ovalbumin exposure,
whereas major histocompatibility complex class
II-deficient mice, lacking functionally active T-cells,
do not [18]. This indicates, as has been confirmed by
others, that the crucial role of IL-4 lies in its effect
on Th2 development, rather than on the induction of
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Fig. 1. –Airway inflammation and remodelling in asthma. Schematic section through airway wall. EGF: epidermal growth factor;
GM-CSF: granulocyte-macrophage colony-stimulating factor; TNF-a: tumour necrosis-a factor; IL: interleukin; bFGF: basic fibroblast
growth factor; VCAM-1: vascular cell adhesion molecule-1; ICAM-1: intercellular adhesion molecule-1; MCP-1: monocyte chemotactic
protein-1; His: histamine; LT: leukotriene; TFG-b: transforming growth factor-b; PDGF: platelet-derived growth factor.
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IgE synthesis and subsequent mast cell degranulation
[19]. This is in line with a number of other investiga-
tions. TAKEDA et al. [20], for example, have shown that
mast cell-deficient mice and their wild-type litter-
mates develop a comparable increase in both airway
eosinophil number and bronchial responsiveness when
sensitized and exposed to ovalbumin. Similarly,
MEHLHOP et al. [21] reported that, in IgE-/- mice,
sensitization and exposure to Aspergillus extract
induced a comparable degree of airway inflammation
and methacholine responsiveness to that found in
wild-type animals. Finally, using B-cell-deficient mice,
it was shown that the absence of any immunoglobulin
production does not prevent development of allergic
airway inflammation [22, 23]. Overall, these observa-
tions indicate that the IgE/mast cell axis does not play
a major role in the induction of allergen-induced
airway inflammation and bronchial hyperresponsive-
ness. Importantly, these experiments do not permit
the exclusion of a possible modulatory role of IgE by
enhancing T-/B-cell interaction [24, 25].

At the same time, what clearly emerges is the central
role of T-cells in these models. Further studies, using
different approaches, including pretreatment with
anti-CD4 antibodies and passive transfer of cells,
confirm the functional importance of CD4 cells and,
more specifically, Th2 [26–30]. Importantly, although
exogenous administration or lung-specific overexpres-
sion of IL-4 in transgenic mice causes epithelial
hypertrophy and some degree of peribronchial inflam-
matory change, this is not accompanied by increased
airway hyperresponsiveness, suggesting that IL-4 in
itself is insufficient to induce all the changes char-
acteristic of asthma, and that other Th2-derived
cytokines are also involved [31, 32]. An obvious
possibility in this respect is IL-5.

Interleukin-5

It barely needs repeating that the eosinophil is
considered a key effector cell in the pathogenesis of
allergic inflammation. Despite possible redundancy
with other cytokines, such as IL-3 and granulocyte-
macrophage colony-stimulating factor (GMCSF), IL-
5 seems to be the primary cytokine involved in vivo in
the production, differentiation, maturation and acti-
vation of eosinophils [33]. This has been illustrated by
several lines of investigation. Exogenous IL-5 admin-
istration has been shown to cause eosinophilia in a
variety of in vivo models [34]. IL-5-expressing trans-
genic mice develop lifelong eosinophilia, whereas
GM-CSF-expressing transgenic mice show increased
numbers of mononuclear cells and neutrophils, but
only a minimal increase in the number of eosinophils
[35, 36]. Similar findings emerge from knockout mice.
For example, the eosinophil inflammatory response to
thioglycollate is not abrogated in GM-CSF-/- mice
[37]. IL-5-/- mice, on the other hand, show decreased
numbers of circulating eosinophils and fail to mount a
normal eosinophilic response to parasitic infections or
to ovalbumin challenge [38, 39]. It should be pointed
out that, even in IL-5-/- mice, a small number of
morphologically normal eosinophils remain detectable

in the blood. A minor contribution of constitutively
expressed IL-3 and GM-CSF to the production of
eosinophils can, therefore, not be excluded. However,
it is of interest to note that, in the absence of IL-5,
local injection of CC chemokines such as eotaxin
cannot induce tissue eosinophilia, even if donor
eosinophils have been administered to restore or
increase the circulating pool, a procedure which in
wild-type animals clearly enhances the tissue response
to eotaxin [40].

Inhalation of IL-5 has also been shown to increase
the percentage of eosinophils in induced sputum and
to augment airway hyperresponsiveness in asthma [7].
Again, expression of IL-5 at the mRNA and protein
level is increased in the mucosa of asthmatic airways
[41, 42]. Expression of IL-5 mRNA has even been
shown to correlate with clinical indices of disease
severity. This corresponds with other studies, showing
that expression of the IL-5R in bronchial biopsy
samples is, inw90%, restricted to eosinophils, and that
expression of the transmembrane form of the IL-5Ra
chain inversely correlates with the baseline forced
expiratory volume in one second (FEV1), whereas
expression of the soluble IL-5Ra which has IL-5
antagonistic properties, correlates positively with
FEV1 [43].

Animal models illustrate that ovalbumin sensitiza-
tion and exposure in IL-5-/- mice does not cause
bronchial hyperresponsiveness as opposed to what is
found in wild-type mice [39]. In subsequent studies, it
was shown that passive transfer of IL-5-secreting
CD4z T-cells from ovalbumin-sensitized wild-type
mice to nonsensitized IL5-/- mice led to airway
eosinophilia and an increase in airway responsiveness
when these animals were exposed to aerosolized
ovalbumin [28]. Similarly, reconstituting IL-5 or IL-5
production, but not IgE, in IL-4-/- mice restored all the
allergen-induced airway changes [44]. Again, this
supports the concept that IL-4 and IL-5 are sequen-
tially involved in the pathogenesis of allergic airway
changes, whereas the role of IgE in the induction of
the process seems rather limited. However, it should
be noted that experiments using other antigen sources
or mouse strains have shown that, although IL-5 is
crucial for inducing eosinophil infiltration in the
airways, modulation of airway responsiveness can
occur independently of IL-5 and airway eosinophilia
[30, 45–47]. These observations do not contradict
the postulated crucial role of Th2 in this phenom-
enon. Indeed, other Th2 cytokines can also influence
airway responsiveness. For example, COHN et al. [29]
reported, using an ovalbumin T-cell receptor trans-
genic model, that passive transfer of Th2 from IL-4-/-

mice can induce airway hyperresponsiveness and
pulmonary eosinophil infiltration upon ovalbumin
exposure in recipient mice. The passively-transferred
T-cells not only produced high levels of IL-5 but also
IL-10, and especially IL-13.

Interleukin-13

IL-13 is also present in increased amounts in
asthmatic airways, and has very similar biological
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activities to IL-4 (table 1) [48–50]. This is reflected in
the structure of their receptors. The IL-13R consists of
the IL-13Ra1 or a2 chain, which binds IL-13, and the
IL-4Ra chain, shared in common with the IL-4R [51].
The signal transduction pathways common to both
receptors involve the intracytoplasmatic domain of
both chains and are largely STAT-6-dependent. IL-4
can bind to both receptors through IL-4Ra, and IL-13
binds only to its own receptor. With the exception of
T-cells, which do not carry functional IL-13Rs, most
cell types respond similarly to IL-4 and IL-13 [52].
Because of this large degree of redundancy, it is
difficult to establish with certainty the exact role of
IL-4 relative to IL-13 in allergen-induced airway
changes, but it would appear that both are function-
ally active. It has been hypothesized that, although
IL-4 is crucial for the initial Th2 development during
primary sensitization, IL-13 release might prove more
important during secondary antigen exposure [11, 53].
This concept is illustrated in a number of in vivo
animal models. As previously explained, the induction
of allergen-induced Th2 development and related
phenomena, such as IgE synthesis, airway eosino-
philia and airway hyperresponsiveness, is totally
abrogated in IL-4-/- mice [15, 19]. The same applies
to STAT-6-/- [16, 17] or IL-4Ra-/- [54], but not IL-13-/-

mice [55]. Administration of neutralizing anti-IL-4
antibodies during sensitization exhibits similar inhibi-
tory effects on Th2 development, thus confirming the
importance of IL-4 during the early response to
antigen. However, when given only during secondary
antigen presentation in already sensitized animals,
anti-IL-4 is far less effective in reducing Th2 cytokine
production, eosinophil influx and bronchial hyper-
responsiveness [19], whereas anti-IL4R maintains
therapeutic effects [31]. This confirms in vitro data
showing that once T-cells have been committed to a
Th2-type phenotype, they become IL-4 independent
[56]. At the same time, this suggests that, during
secondary antigen exposure, IL-13 plays a more
important role than IL-4. In line with these observa-
tions, neutralizing endogenously released IL-13 with
an IL-13Ra2Fc fusion protein during secondary
antigen exposure largely inhibits the characteristics
of asthma in murine models [54, 57].

Interleukin-9

Another cytokine derived mainly from Th2, but
also from eosinophils, is IL-9 [58]. In vitro data
indicate that amongst other features, it stimulates
proliferation of activated T-cells, enhances production
of IgE from B-cells, promotes proliferation and
differentiation of mast cells, upregulates the a-chain
of the FceRI receptor and induces CC-chemokine
expression in lung epithelial cells (table 2). As such, it
could, again, contribute substantially to allergen-
induced airway changes. Human data show increased
expression of IL-9 in bronchial biopsy samples of
asthmatics [59]. In addition, genetic analyses have
linked IL-9 to bronchial hyperresponsiveness as a
major characteristic of asthma. Animal data are
slightly less clear regarding the in vivo role of IL-9.
The lung-specific overexpression in transgenic mice
has been shown to induce airway hyperresponsiveness
in addition to morphological changes that bear
similarities to asthma [60]. However, experiments in
IL-9-/- mice indicate that, although IL-9 might play a
role in goblet cell hyperplasia and mast cell develop-
ment, it has little or no effect on eosinophils, T-cell
development or immunoglobulin response [61].

The overall message emerging from these and other
experiments is that T-cells can alter airway respon-
siveness in their own right, most probably through
production of a cytokine cocktail, the composition of
which can vary according to experimental conditions.

Chemokines

Recruitment of inflammatory cells into the airway
mucosa requires, in conjunction with the immuno-
regulatory activity of Th2, expression of adhesion
molecules on vascular endothelium and chemokine
activity. An abundance of chemokines and chemokine
receptors has been identified. Based on the number
and position of cysteine residues within their amino
acid sequence, chemokines can be categorized as C,
CC, CXC or CX3C. The global biological activity of
the various cytokines within each structurally related
group is largely similar. The CXC or a-chemokines
principally attract neutrophils and have, therefore,
mainly been related to acute inflammatory processes.
To date, models of allergic inflammation have
predominantly focused on the CC or b-chemokine
family, as these express chemotactic activity towards
eosinophils as well as dendritic cells, T-lymphocytes,
basophils and monocytes [62]. The precise functional
role of each chemokine within this group remains to

Table 1. –Biological properties of interleukin (IL)-13
relevant to asthma

Large overlap with IL-4, but human T-cells have no
functional IL-13 receptor

Isotype switching of B-cells to immunoglobulin-E synthesis
Upregulation of FceRII expression
Downregulation of production of pro-inflammatory
cytokines (TNF-a and IL-1b), chemokines
(RANTES) and IL-12

Upregulation of expression of VCAM-1, but not of ICAM-1
Increase in eosinophil survival
Chemotaxis and activation of fibroblasts
Stimulation of mucus production

FceRII: low-affinity immunoglobulin E receptor; TNF-a:
tumour necrosis factor-a; RANTES: regulated on activa-
tion, normal T-cell expressed and secreted; VCAM-1:
vascular cell adhesion molecule-1; ICAM-1: intercellular
adhesion molecule-1.

Table 2. –Biological properties of interleukin (IL)-9
relevant to asthma

Stimulates proliferation of activated T-cells
Enhances immunoglobulin-E production
Upregulates the a chain of the FceRI receptor
Enhances IL-5 receptor expression, and differentiation and
survival of eosinophils

Promotes proliferation and differentiation of mast cells
Induces CC chemokine expression in lung epithelial cells
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be fully explored. A sequential role for different
chemokines in antigen-induced eosinophil recruitment
has been suggested [63, 64]. Of particular interest
for allergic disorders is the observation that CCR3
receptor expression is limited to eosinophils, basophils
and Th2. Several CC chemokines bind to the CCR3
receptor, including RANTES, MCP-3, MCP-4 and
the CCR3-specific ligand eotaxin. Increased expres-
sion of eotaxin and the CCR3 receptor have been
described in bronchial mucosa from asthmatics [65].
Eotaxin expression was shown to correlate with the
degree of bronchial hyperresponsiveness. In addition,
plasma eotaxin levels have been associated with
impaired lung function in a large cohort of asthmatics
[66]. These various observations have raised interest in
the CCR3 receptor as a potential therapeutic target
[67]. Blockade of the CCR3 receptor, using either
monoclonal antibodies or modified RANTES proteins
such as Met-RANTES or AOP-RANTES, has proven
effective in in vivo animal models [63, 68].

Pro-inflammatory cytokines

Another group of cytokines that needs to be
considered are the pro-inflammatory cytokines such
as TNF-a and IL-1b. The pleiotropic activities of
TNF-a include pro-inflammatory effects such as
leukocyte recruitment through upregulation of adhe-
sion molecules on vascular endothelial cells and
induction of cytokine and chemokine synthesis [69].
In addition, TNF-a also has the potential to stimulate
mesenchymal cells such as fibroblasts or smooth
muscle cells, and therefore could play an important
role in the pathogenesis of airway remodelling [70, 71].
Elevated levels of TNF-a have been detected in
sputum, bronchoalveolar lavage fluid and biopsy
samples from asthmatics [72–74]. Inhalation of
TNF-a causes airway hyperresponsiveness and an
increase in sputum neutrophil counts in healthy
volunteers [75]. Genetic analysis also links TNF-a to
characteristics of asthma as an association has been
described between the -308 TNF-a promoter poly-
morphism and the degree of bronchial hyperrespon-
siveness. Allele 2 of the -308 TNF-a polymorphism
is characterized by increased releasability of TNF-a
in response to various stimuli [76]. Moreover, there
is evidence to suggest that TNF-a is an impor-
tant element in determining the severity of asthma.
Sputum and biopsy samples from patients with severe
persistent asthma have been shown to contain
increased numbers of neutrophils [77–79]. One of the
major stimuli for neutrophil recruitment is exposure
to endotoxin. The severity of asthma symptoms
has been related to the endotoxin content of house
dust, rather than to the allergen load in these samples
[80]. That the endotoxin-induced effects are largely
mediated through the endogenous release of TNF-a
is illustrated in in vivo animal models. Exogenous
administration of TNF-a was shown to induce airway
neutrophilia and hyperresponsiveness, whereas pre-
treatment with anti-TNF-a antibodies profoundly
reduced the endotoxin-induced airway changes [81].

Acute asthma attacks might also be largely TNF-a

driven. Increased neutrophilia has been reported in
sputum from patients who experience an acute asthma
attack [82]. Similarly, bronchoalveolar lavage fluid
from subjects who require ventilation due to status
asthmaticus contain increased numbers of neutrophils
and levels of pro-inflammatory cytokines including
TNF-a [83].

Immunomodulatory cytokines

When evaluating the functional role of cytokines in
asthma, it is important to bear in mind that they act
within a network of mutually interacting cytokines.
Allergic airway inflammation might, therefore, be
induced by not only increased expression of Th2
cytokines but also decreased expression of counter-
acting ones. Interesting cytokines in this respect
include IL-12, IL-18, interferon gamma (IFN-c) and
IL-10 (fig. 2).

Interleukin-12, interleukin-18 and interferon gamma

IL-12 expression has been shown to be reduced in
bronchial biopsy samples from asthmatic individuals
[49]. IL-12 is produced by antigen-presenting cells
and is known to play an important role in Th1/Th2
differentiation during primary antigen presentation
[84]. The major antigen presenting cell involved in the
process of sensitization to aeroallergens is the den-
dritic cell present in the airway epithelium. Mucosal
dendritic cells demonstrate high antigen uptake but
low antigen-presenting capacity. During migration
from the airway mucosa to the local lymph nodes,
antigen-laden dendritic cells mature, acquiring their
full immunostimulatory phenotype. In the lymph
nodes, naive T-cells are stimulated and differentiate
towards a Th1- or Th2- like phenotype. One of
the factors that influence T-cell differentiation is
the cytokine composition of the microenvironment,
IL-12 having been identified as the necessary cofactor
for Th1 development. In vivo animal models have
confirmed that exogenous administration of IL-12
during the primary sensitization process, suppresses

Increased expression of
Th2 cytokines
(IL-4, IL-5, IL-13, IL-9,

GM-CSF and TNF-α)

Decreased expression
of immunomodulatory

cytokines
(IL-10, IFN-γ, IL-12 and

IL-18)

Asthma

Fig. 2. –The cytokine network involved in the pathogenesis of
asthma. Normal airway morphology is shown. Th2: type 2 T-helper
cell; IL: interleukin; GM-CSF: granulocyte-macrophage colony-
stimulating factor; TNF-a: tumour necrosis factor-a; IFN-c: inter-
feron gamma.
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allergen-induced Th2 development, favouring Th1
differentiation [85, 86].

Interestingly however, even when only administered
during secondary antigen exposure, IL-12 retains the
capacity to inhibit allergen-induced eosinophilia and
airway hyperresponsiveness, despite the persistence of
circulating IgE [85]. The precise mechanisms under-
lying this effect are largely unknown. Fully committed
Th2 have been shown to loose their IL-12 responsive-
ness [87]. Therefore, a reversal of a Th2 towards a Th1
phenotype at this stage is unlikely. IL-12 is known to
induce the production of IFN-c and to downregulate
IL-5 production, possibly through endogenous release
of IL-10 [88, 89]. However, it has been shown that
IL-12 retains its immunomodulatory effect, even when
given during secondary antigen presentation in IFN-
cR-/- or IL-10-/- mice [90, 91]. The exact mechanisms of
these IL-12-mediated effects, therefore, need to be
further established.

In view of its biological activities, IL-12 has
attracted considerable interest as a potential treatment
for allergic disorders. Implementing this approach is,
however, hampered by the toxicity of IL-12, which has
been noted in human cancer studies [92]. In a recently
reported antigen-challenge study in mild asthma,
IL-12 was given systemically in incremental doses, as
advocated to reduce toxicity. Nevertheless, significant
side-effects occurred. In addition, despite a substantial
reduction in circulating blood eosinophil count, IL-12
did not influence the antigen-induced early or late
asthmatic response [93]. It remains to be further
investigated whether topical application or repeated
administration of lower doses might prove to be a
better therapeutic option. Interesting in this respect is
the potential synergistic activity of IL-12 and IL-18.
IL-18 is secreted by macrophages and was initially
described as IFN-c-releasing factor [94]. The absence
of endogenous IL-18-/- enhances antigen-induced air-
way eosinophilia [95]. Importantly, IL-12 and IL-18
appear to act synergistically in inducing IFN-c and in
inhibiting IL-4-dependent IgE synthesis as well as
inhibiting allergen-induced airway hyperresponsive-
ness [96]. Whether the combination of both cytokines
carries less toxic side-effects than equieffective doses
of either cytokine given alone needs to be further
evaluated.

In in vivo animal models, IFN-c has also been
shown to prevent the development of antigen-induced
airway eosinophilia and hyperresponsiveness [97–99].
Similarly, IFN-cR-/- mice develop a prolonged airway
eosinophilia in response to allergen [100]. To date,
however, exogenous administration of IFN-c in
humans has proven disappointing. Nebulized IFN-c
was reported not to influence baseline FEV1 in mild
asthma, and subcutaneous administration of IFN-c
did not offer any improvement in steroid-dependent
asthmatics [101, 102].

Interleukin-10

IL-10 is a pleiotropic cytokine that has the potential
to downregulate both Th1- and Th2- driven inflam-
matory processes [103]. It is of interest that IL-10

might also have a beneficial effect on airway
remodelling, as it has been shown to reduce collagen
type I synthesis and vascular smooth muscle pro-
liferation [104, 105]. The precise functional role of
IL-10, however, appears to be somewhat unclear.
Whether IL-10 expression is changed in asthma is
uncertain, as in some studies reduced and in others
increased bronchoalveolar lavage fluid levels were
found [106–108]. IL-10, administered exogenously at
the time of secondary antigen presentation, reduces
antigen-induced airway eosinophilia in animal models
[109–111], whereas airway eosinophilia and total
serum IgE levels are increased in sensitized IL-10
knockout mice [112, 113]. However, the effects of
IL-10 on airway responsiveness are somewhat more
contradictory. In some studies, endogenous produc-
tion of IL-10 was shown to dampen airway respon-
siveness [113], whereas others have shown that IL-10
enhances the allergen-induced increase in airway
responsiveness, despite the reduction in eosinophil
recruitment [111, 112].

Conclusion

Type 2 T-helper lymphocytes are presently con-
sidered to be the main orchestrator of the allergic
airway inflammation underlying asthma. Functional
analysis of the role of cytokines, largely based on in
vivo animal models, confirms this hypothesis. T-cells
themselves seem to be the main factor in determining
the degree of airway inflammation and hyper-
responsiveness (fig. 3). It would appear that cytokine
production, rather than the influx of eosinophils or
production of immunoglobulin-E, is the cause of
bronchial hyperresponsiveness. Importantly, biopsy
studies clearly illustrate the presence of a complex
cytokine network in asthmatic airways. The redun-
dancy of and the mutual interaction between the
cytokines within this network needs to be borne in
mind when trying to assess the functional role of an

Fig. 3. –The functional role of cytokines involved in the patho-
genesis of asthma. APC: antigen-presenting cell; Th2: type 2
T-helper cell; IL: interleukin; IFN-c: interferon gamma; GM-CSF:
granulocyte-macrophage colony-stimulating factor; TNF-a: tumour
necrosis factor-a.
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individual cytokine in a complex disease process such
as asthma.
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