CORRESPONDENCE

CO₂-response in chronic obstructive pulmonary disease

To the Editor:

Montes de Oca and Celli [1], in their paper on CO₂-responses, present data on the control of breathing in patients with normocapnic and hypercapnic chronic obstructive pulmonary disease (COPD), and in normal subjects. They conclude that the baseline ventilatory drive and CO₂-responses are preserved in most patients with severe COPD. However, effective ventilation is inadequate in the more severely obstructed patients, resulting in hypercapnia.

Apart from the incorrect conversion factors for cmH₂O into kPa, the paper leaves a number of open questions regarding the interpretation of the data.

Resting values of mouth occlusion pressure (P₀.1) in controls (table 2) differ from those in COPD patients. Unfortunately, no data are given on the functional residual capacity (FRC) level of the controls. The FRC values of both patient groups seem likely to be elevated as compared to control subjects. Consequently the P₀.1 could be higher due to the relative stiffness of the hyperinflated lungs and thorax or due to load-compensating mechanisms. The authors touch on this problem in the discussion, but do not really put this in perspective of the interpretation of this parameter for quantification of the ventilatory drive.

The authors have measured data on CO₂-responses from minute ventilation and from P₀.1 by performing rebreathing experiments according to the Read rebreathing technique. It is not clear how the P₀.1 response to hypercapnia was calculated: the methods section suggests that the P₀.1 value itself was used (as an equivalent of tidal volume). Table 2 presents the ΔP₀.1/ΔPETCO₂ in cmH₂O·min⁻¹·torr⁻¹, suggesting that the P₀.1 value was multiplied by the respiratory frequency (as an equivalent for minute ventilation)?

The rebreathing technique is based on giving 7% CO₂ (inspiratory carbon dioxide tension (IPICO₂)=7.0 kPa (53 mmHg)) in oxygen in the inspiratory air, in order to stop CO₂ excretion and thus increasing the arterial carbon dioxide tension (PaCO₂) as a stimulus to the chemoreceptors. The time course of this process will be different depending on the starting level of arterial PaCO₂. The arterial PaCO₂ will be fairly representative for the stimulus to the peripheral chemoreceptor. However, the activity of this chemoreceptor will be low or even zero in the high hyperoxic range in this kind of experiment. Thus, the build-up of CO₂ at the site of the central chemoreceptor will be the principal stimulus for the increase in ventilation and P₀.1 in these subjects. The eucapnic patients have a PaCO₂ of 5.3 kPa (40 mmHg), whereas the hypercapnic patients have a PaCO₂ of 7.3 kPa (55 mmHg). We are not informed about the PaCO₂ of the normal subjects, but one may assume that this was in the normal range. Thus, the control subjects and normocapnic patients will build-up the central chemoreceptor CO₂-stimulus with a substantially shorter time constant than the hypercapnic patients. This means that there is a different relationship between PETCO₂ and the central chemoreceptor stimulus in the three groups, which will be even greater due to different degrees of (mis)matching of ventilation and perfusion. Consequently, it is not very adequate to use the nonsteady state value of PETCO₂ as the ventilatory stimulus to compare the CO₂-responses in both patient groups and in the control subjects on the basis of this parameter of ventilatory stimulus. Steady state CO₂-response curves, with PaCO₂ as the stimulus, might have been more adequate in this kind of investigation.

The authors speculate that "patients with severe COPD reach the top values of their neuromuscular drive and that, after this level is reached, no more increment in the P₀.1 can be expected to maintain PaCO₂ within normal limits". Surprisingly the authors do not discuss the findings of Scano et al. [2] in the same patients and address the very same problem, using the same CO₂-rebreathing experiments. Their results showed that the response of the electrical activity in the diaphragm to hypercapnia was not significantly different in normocapnic and hypercapnic COPD patients or in control subjects. This experimental evidence suggests that there are still reserves in the neuromuscular drives of the severe COPD patients, and that impairment of respiratory muscle function prevents this drive to be converted into actual ventilation. If this is what Montes de Oca and Celli [1] mean with "neuromechanical coupling failure", then the eventual interpretation of the findings of both groups may be similar?

I am unsure whether both groups of investigators may not be measuring effects of different relationships between PETCO₂ and the actual central chemoreceptor stimulus, combined with the net result of load on the respiratory muscles versus the working capacity of these muscles.

H. Folgering
Universitair Longcentrum Dekkerswald, Nijmegensebaan 31, 6561 KE Groesbeek, the Netherlands. Fax: 31 246 859290.

References
