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The respiratory muscles: cellular and molecular physiology
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The respiratory muscles have been studied exten-
sively during the last 20 yrs. This interest was triggered
predominantly by the observation made by ROUSSOS and
MACKLEM [1] that the respiratory muscles, like all other
skeletal muscles, may fatigue. Subsequent research crit-
ically examined the significance of inspiratory muscle
fatigue in clinical pulmonary medicine. The conclusion
of this research was largely that inspiratory muscle fat-
igue was rarely, if ever, present [2, 3]. Respiratory mus-
cle fatigue appeared to be effectively avoided by reduction
of the duration of inspiration whenever the limits of res-
piratory muscle performance were approached [4]. This
reduction in the duration of inspiration leads to an inap-
propriately small tidal volume, and, hence, to alveolar
hypoventilation and consequent hypercapnia [4, 5]. In-
spiratory muscle fatigue, therefore, appeared to occur
only in exceptional circumstances, such as cardiogenic
[6] or septic shock [7] and weaning from mechanical
ventilation [8]. The limits of respiratory muscle perfor-
mance are determined by respiratory muscle force and
endurance capacity. At present, there are few data on
the clinical significance of respiratory muscle endurance.
There are, however, abundant data on respiratory mus-
cle weakness.

Indeed, the clinical significance of respiratory muscle
weakness is now clearly established, not only concep-
tually (see above), but also through empirical obser-
vation. Although there are, without question, other
circumstances in which it is important, it has been most
extensively studied in patients with chronic obstructive
pulmonary disease (COPD). The present Editorial,
therefore, will focus primarily on COPD. Inspiratory
muscle weakness was shown to be related to dyspnoea
[9], fatigue, and exercise limitation in COPD patients
[10]. Expiratory muscle weakness was shown to be
related to cough efficiency [11, 12]. In addition, inspir-
atory muscle weakness is an important determinant of
the development of hypercapnic respiratory failure
[13]. As hypercapnic respiratory failure is the most im-
portant cause of death in COPD [14], inspiratory mus-
cle weakness is, therefore, also expected to be related
to mortality in these patients. At least two observations
support the presence of such a relationship. Indeed,
DECRAMER et al. [15] demonstrated that survival was
severely reduced in patients with COPD and steroid-
induced myopathy in comparison to control COPD patients,
despite the fact that they had the same degree of air-
flow obstruction and hyperinflation, the known major

determinants of survival in COPD. Moreover, GRAY-DONALD

et al. [16], in a cohort study on 348 COPD patients,
demonstrated that, in hospitalized COPD patients, max-
imal inspiratory pressure (PI,max) was an independent
determinant of survival, besides hypercapnia, body mass
index and transfer factor.

There are numerous factors potentially contributing
to respiratory muscle weakness in COPD patients. In-
spiratory muscle weakness may be related to hyper-
inflation, which puts the inspiratory muscles at a less
advantageous position of their length-tension curve [17],
and causes geometrical alterations in the inspiratory
muscles. Both factors curtail the force-generating cap-
acity of the respiratory muscles. Moreover, hyperinfla-
tion increases the dimensions of the rib cage, such that
the muscles at the periphery have to generate a greater
tension to develop the same change in pleural pressure
in order to produce the same tidal volume [18]. Al-
though adaptations to chronic hyperinflation most prob-
ably occur, the overall effect of hyperinflation on the
inspiratory musculature is likely to be detrimental [19].
This is confirmed by the observation that volume red-
uction surgery, which in essence reduces hyperinfla-
tion, improves inspiratory muscle function [18, 20–22].

In addition, generalized muscle weakness is present
in COPD patients [23]. Both the inspiratory and expi-
ratory muscles partake in this muscle weakness. There
are several causes of this generalized muscle weakness.
They include: malnutrition [24]; cardiac failure [25, 26];
hypoxaemia; hypercapnia [27]; steroid treatment [28,
29]; electrolyte disturbances, such as hypomagnesae-
mia [30]; and hypophosphataemia [31] etc.

Clearly, the peripheral muscles also participate in this
generalized muscle weakness, and a number of studies
have recently underlined the significance of peripheral
muscle weakness in COPD patients. Three studies have
demonstrated a relationship between peripheral muscle
force and exercise capacity in COPD patients, suggest-
ing that exercise limitation is frequently associated with
peripheral muscle dysfunction [10, 32, 33]. Two other
studies have shown that peripheral muscle training res-
ulted in beneficial effects. In the first study, strength
training was applied. It resulted in improvements in
muscle force and quality of life [34]. In the second
study, low intensity endurance training was performed.
The beneficial effects observed were: reductions in dys-
pnoea; and reduced ventilatory requirements [35]. Al-
though, conceptually, it would be expected that, primarily,
endurance training would be beneficial, at present it
remains unclear whether strength or endurance training
results in the greatest benefit to COPD patients. The
mechanism of peripheral muscle dysfunction is likely
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to be related to deconditioning combined with the above-
mentioned factors causing generalized muscle weak-
ness.

Most studies on respiratory and peripheral muscle
function so far, have been classical clinical and physi-
ological studies. Although these studies have con-
tributed greatly to our understanding of the role of the
respiratory muscles in clinical medicine, new powerful
tools have now become available. These make it pos-
sible to obtain better insight into the mechanism of mus-
cle derangement, and provide a potential rational basis
for the treatment of respiratory and peripheral muscle
dysfunction. They are, in essence, techniques used in
the study of cell and molecular biology. Active lines of
research in this field include the damage caused to the
diaphragm by oxygen free radicals [36, 37], and by
nitric oxide production [38]. The series, "Cell Biology
of the Respiratory Muscles", gives an overview of what
is currently to be expected of these techniques and rep-
resents the contents of an Assembly Symposium held
by the Clinical Physiology Assembly at the European Res-
piratory Society (ERS) annual meeting in Stockholm,
1996.

Four outstanding contributions by the best scientists
in this field will update the reader with a state-of-the-
art overview. The first contribution by SIECK and PRAKASH

[39] studied myosin heavy chain expression in single
diaphragm fibres and its relationship to cross-bridge
kinetics. This study improves insight into the relation-
ship between contractile properties and myosin isoform
expression.

The second paper by GEA [40] gives an overview of
the regulation of myosin heavy chain expression in the
respiratory muscles. Many of the factors detrimentally
affecting respiratory and peripheral muscle function cited
above, exert their effect through an influence on myo-
sin heavy chain expression. Training appears to prom-
ote expression of slow myosin, thus improving the
endurance capacity of the muscles. If the factors regu-
lating myosin heavy chain expression were clearly un-
derstood, great potential to improve respiratory muscle
function would be likely to be available. COPD patients
would probably benefit from such potential. 

AUBIER [41] studied the regulation of calcium-adeno-
sine triphosphatase (Ca-ATPase) activity in the respir-
atory muscles. This is another basic process with significant
effects on muscle function and undergoing major alter-
ation in circumstances relevant to clinical pulmonary
medicine. 

Finally, in an overview, PETROF [42] summarizes the
current potential for gene therapy to the respiratory
muscles. The method employed is adenovirus-mediated
gene transfer. This therapy is, without question, still asso-
ciated with significant problems, such as destructive
immune responses and expression of adenoviral gene
products, both causing damage to muscle fibres and cur-
tailing the muscle's force-generating capacity. Never-
theless, it unquestionably holds promise that in the
future it will allow treatment of conditions such as
genetic muscle diseases that were hitherto fatal.
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