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To the Editor, 

Pulmonary embolism (PE) is a major cause of morbidity and mortality.[1] Computed tomography 

pulmonary angiography (CTPA) is the gold standard for diagnosing PE[2] and a common 

investigation which contributes to potentially avoidable radiation exposure. CTPA use has 

quadrupled in the past two decades,[3] and this has been associated with lower rates of PE 

detection[4] and possible overdiagnosis.[5]  

Despite efforts to make judicious use of CTPA, PE is typically only detected in 5-15% of 

scans.[6] Numerous clinical decision rules (CDRs) have been developed to aid clinicians, 

including the Wells[7] and Geneva scores[8], the Pulmonary Embolism Rule-out Criteria [9], 

YEARS[10] and PEGeD[11]. Clinician gestalt is heavily weighted in these CDRs. Conversely, D-

dimer measurement is advised as a follow-up test, to be considered after CDRs have been 

applied, despite the fact that D-dimers below the upper limit of normal (ULN) are the most 

robust predictor of absence of PE, typically ruling out PE in ≥98% of individuals.[10, 11] 

Furthermore, D-dimers increase with age, leading to the validation of “age-adjusted D-dimer” 

(aaD-dimer) thresholds.[12, 13] Recent studies suggests that extending D-dimer thresholds to 

1pg/mL in low-risk individuals, effectively rules out PE at 3-months follow-up.[10, 11]   

 

We hypothesised that combining D-dimers and risk factors in a model which removes the 

subjective likelihood of PE could provide robust PE rule-out performance. Furthermore, we 

sought to explore extended D-dimer thresholds to identify novel cut-offs for PE-prediction in 

moderate-risk patients. We performed a single-centre, retrospective, proof-of-concept study to 

develop a PE rule-out algorithm. We trained a machine learning model for PE-prediction in a 

PE-enriched training dataset (a discovery set of real-world consecutive scans, combined with a 

set of exclusively PE-positive scans to balance outcomes and improve model training), testing 

performance in a validation dataset of consecutive CTPAs. 
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Training and validation scans were performed between January 1st 2017 and May 30th 2020, 

and between January 1st and December 31st 2016, respectively. Age and sex were 

documented. CTPA requests were reviewed to identify the presence of risk factors: Wells score 

components[7] (excluding “PE is the most likely diagnosis”), hormone replacement therapy/oral 

contraceptive pill (HRT/OCP), peri-partum status, chest pain, loss of consciousness and 

hypoxaemia. CTPA-reported PE was recorded as a binary outcome. CTPAs performed to 

confirm/monitor previously identified PEs and those deemed non-diagnostic were excluded. D-

dimer level (HemosIL® D-dimer HS 500 assay, Instrumentation Laboratory, Bedford, MA, USA) 

was documented if measured within 24hours prior to CTPA. aaD-dimer thresholds were 

calculated for patients >50-years-old, using the formula (
𝐴𝑔𝑒

100⁄ )pg/mL. Only data from CTPAs 

accompanied by D-dimers measured within the prior 24 hours were included. 

 

We assessed the performance of a gradient boosting classifier (GBC) (xgboost), a generally 

high-performing algorithm for classification tasks, examining the role of D-dimer thresholds 

(ULN, 1.5xULN, 2xULN) in combination with Wells components and relevant co-variables as 

predictors in the model. A model training pipeline was created, with predictor variables 

assessed in several combinations using age, Wells score components and D-dimer. We 

proposed a model incorporating a given D-dimer threshold (Θ), where the decision rule of any 

model M, given a set of features F, and D-dimer threshold (Θ) would be:  

 

𝑓(𝑀, 𝐹, Θ) = {
𝑓(𝑀, 𝐹) 𝑖𝑓 D-dimer < 𝛩  

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝐸 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 

 

Performance and comparison to simple pre-defined D-dimer thresholds (ULN, 1.5xULN, 2xULN 

and aaD-dimer) was assessed in the validation cohort. 
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Statistical analysis was performed in R v4.0.4 (the R Foundation for Statistical Computing) and 

Jupyter Lab v2.2.6 running Python 3.8 (scikit-learn v0.24.1, pandas v1.2.3). All comparative 

tests were two-sided with p-values <0.05 considered significant. 

 

Of 1047 CTPAs screened in the discovery dataset, 572 with D-dimers were included (mean age 

44.6 years, 39.5% male). 2688 CTPAs were screened for inclusion in the PE-enrichment, with 

367 were positive for PE (13.7%), of which 190 with D-dimers were included (mean age 47.3 

years, 44.2% male). These two sets formed the PE-enriched training set (n=762). 1314 scans 

were screened for the validation cohort and 634 (48.2%) with D-dimers were included (mean 

age 43.6 years, 36.8% male). PE prevalence did not differ between CTPAs included or 

excluded based on D-dimer availability (discovery cohort: 15.7% vs 14.3%, p=0.59; validation 

cohort: 14.5% vs 15.5%, p=0.69). PE prevalence did not differ between the discovery and 

validation cohorts (15.7% vs 15.5%, p = 0.96). Median D-dimer did not differ between discovery 

and validation cohorts (1.17pg/mL, IQR [0.74, 2.24] vs 1.15pg/mL, IQR [0.70, 2.40], p = 0.87) 

but was markedly higher in the enrichment (PE-positive) cohort (3.54pg/mL, IQR [1.76, 7.10], p 

<0.001). 

 

Among the models trained we found that a model incorporating a D-dimer threshold of 1.5xULN 

(0.75pg/mL), Wells Score components and age as predictors performed best in validation (NPV 

99.3%, Sensitivity 99.0%, Specificity 27.4%). The performance of the model compared to the 

ULN and aaD-dimer for rule-out of PE was 99.3% vs 98.1% vs 98.2% respectively for NPV 

(p=ns), 98.9% vs 98.9% vs 97.96% respectively for sensitivity (p=ns), and 23% vs 8% vs 16% 

respectively for scans predicted negative for PE (p<0.0001 by McNemar test)(Figure 1). 

We describe the results of a proof-of-concept study investigating novel approaches to PE-

prediction based on the analysis of 1396 CTPAs of individuals deemed clinically to be at least at 

moderate risk of PE who underwent CTPA scans during usual care. Using easily available 
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clinical predictors we demonstrate that a gradient boost classifier (xgboost) model outperformed 

traditional and exploratory D-dimer thresholds for ruling out PE. This model achieved a high 

NPV (99.3%), sensitivity of  98.98%, and would outrule significantly more CTPAs than using 

ULN or aaD-dimer thresholds.  

In 2017 the ISTH Subcommittee on Predictive and Diagnostic Variables in Thrombotic Disease 

suggested that the historically accepted failure rate of 2.7% for venous thrombo-embolism may 

not be valid and that a lower failure threshold of 1.8-2% should be used to calculate power for 

future prospective studies.[14] Our model achieved the target NPV suggested by the ISTH and 

performed better than the ULN cut-off, tripling the number of CTPAs predicted negative.  

Our study has some limitations, including the retrospective single-centre design, though the 

~15% PE prevalence in all cohorts suggests reasonable CTPA use. Secondly, CTPA outcome 

was determined by real-world reports, and not by re-interpretation of the images. Additionally, 

clinical factors were drawn from unstructured clinician CTPA requests, meaning the presence of 

a variable can be assumed to be reliable, but the absence of a risk factor in the request cannot 

as some features may have been inadvertently omitted by referring physicians. Moreover, only 

positive predictors of PE (e.g., malignancy, immobility), and not factors associated with a 

negative likelihood of PE, were considered. Collectively, these issues suggest that greater 

performance could be achieved in future prospective studies adopting similar approaches. 

Furthermore, while the included CTPAs were deemed clinically necessary during clinical care, 

systematic prospective risk scoring was not available and selection bias due to the exclusion of 

CTPAs without D-dimer must be considered. Nonetheless, the similarity in PE prevalence 

between scans included and the excluded cohorts suggests that no bias in PE-risk was 

introduced by exclusion based on absence of D-dimer. 

Extending D-dimer cut-offs beyond the upper limit of normal may be applicable even in 

populations with moderate-to-high pre-test probability of PE, potentially extending the insights 
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from YEARS and PeGed and improving pre-test-prediction and resource utilisation. These 

results provide insights into possible future of PE risk-stratification strategies. 
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PE-enriched 
training dataset

(n = 762)

PE prediction 
Machine Learning 

(xgboost)

Discovery dataset 
(n = 572)

PE-enriching dataset 
(n = 190)

Testing in validation dataset
( n= 634)

No PE PE

Performance (n = 634)
D-dimer 

Threshold
%Predicted 

negative
% PEs 
missed Sens Spec PPV NPV FNR FPR TNR TPR TP FP FN TN

D-dimer 
alone

ULN 8.36 1.02 98.98 9.70 16.70 98.11 0.01 0.90 0.10 0.99 97 484 1 52

Age-adjusteda 16.09 2.04 97.96 18.66 18.05 98.04 0.02 0.81 0.19 0.98 96 436 2 100

1.5xULN 28.55 4.08 95.92 33.02 20.75 97.79 0.04 0.67 0.33 0.96 94 359 4 177

2xULN 43.38 10.20 89.80 49.44 24.51 96.36 0.10 0.51 0.49 0.90 88 271 10 265

Machine 
learningb

1.5xULN 23.34 1.02 98.98 27.43 19.96 99.32 0.01 0.73 0.27 0.99 97 389 1 147

2xULN 35.96 7.14 92.86 41.23 22.41 96.93 0.07 0.59 0.41 0.93 91 315 7 221

Definition of abbreviations: NPV = negative predictive value, FN = false negative, FNR = false negative rate, FP = false positive, FPR = false positive rate, PPV = 
positive predictive value, PE = pulmonary embolus, Sens = sensitivity, Spec = specificity, TN = true negative, TNR = true negative rate, TP = true positive, TPR = 
true positive rate.
a Age-adjusted D-dimer threshold = ( !!"#

$%%)pg/mL, 
b Gradient Boost Classifier incorporating a given D-dimer cut-off, Wells score components and age.

a)

b)

c)

Discovery dataset

1047 scans 
reviewed

1 non-diagnostic quality
4 for reasons other than PE
12 PE known prior to CTPA.
6 incomplete clinical data
5 no scan performed after order

1019 met 
inclusion

447 no D-dimer

572 with 
D-Dimer

PE-enriching dataset

2688 scans 
reviewed

2 duplicate scans removed
16 PE known prior to CTPA 
5 incomplete clinical data

344 met inclusion

154 no D-dimer

190 with 
D-Dimer

367 scans +ve for 
PE

Validation dataset

1314 scans 
reviewed

11 non-diagnostic quality
8 PE known prior to CTPA 
10 incomplete clinical data
4 Duplicate requests

1281 met 
inclusion

647 no D-dimer

634 with 
D-Dimer

Training Validation
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Figure legend 
 
Figure 1: a) Prisma diagram of study population selection, b) Study design: a discovery 
set of 572 consecutive CTPAs (PE prevalence 15.7%) was combined with a set of 190 
exclusively PE-positive CTPAs to balance outcomes so as to improve classification 
training. This PE-enriched training set (n = 762) was used to train models and 
performance was tested in the validation dataset comprised of 634 consecutive CTPAs 
(PE prevalence 15.5%). c) Performance metrics of the simple D-dimer thresholds and 
machine learning models in the validation cohort. 


