Skip to main content

Main menu

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • Peer reviewer login
    • WoS Reviewer Recognition Service
  • Alerts
  • Subscriptions
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

User menu

  • Log in
  • Subscribe
  • Contact Us
  • My Cart

Search

  • Advanced search
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

Login

European Respiratory Society

Advanced Search

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • Peer reviewer login
    • WoS Reviewer Recognition Service
  • Alerts
  • Subscriptions

Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants

KF Rabe, H Magnussen, G Dent
European Respiratory Journal 1995 8: 637-642; DOI: 10.1183/09031936.95.08040637
KF Rabe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Magnussen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Dent
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

In addition to its emerging immunodulatory properties, theophylline is a bronchodilator and also decreases mean pulmonary arterial pressure in vivo. The mechanism of action of this drug remains controversial; adenosine antagonism, phosphodiesterase (PDE) inhibition and other actions have been advanced to explain its effectiveness in asthma. Cyclic adenosine monophosphate (AMP) and cyclic guanosine monophosphate (GMP) are involved in the regulation of smooth muscle tone, and the breakdown of these nucleotides is catalysed by multiple PDE isoenzymes. The PDE isoenzymes present in human bronchus and pulmonary artery have been identified, and the pharmacological actions of inhibitors of these enzymes have been investigated. Human bronchus and pulmonary arteries are relaxed by theophylline and by selective inhibitors of PDE III, while PDE IV inhibitors also relax precontracted bronchus and PDE V/I inhibitors relax pulmonary artery. There appears to be some synergy between inhibitors of PDE III and PDE IV in relaxing bronchus, and a pronounced synergy between PDE III and PDE V inhibitors in relaxing pulmonary artery. In neither tissue does 8-phenyltheophylline, a xanthine exhibiting adenosine antagonism but not PDE inhibition, cause any significant relaxation, implying that theophylline does not exert its actions through adenosine antagonism. The close correspondence of theophylline concentrations inhibiting bronchus or pulmonary artery PDE and those causing relaxation points towards PDE inhibition as the major mechanism of action of theophylline in smooth muscle relaxation.

PreviousNext
Back to top
Vol 8 Issue 4 Table of Contents
  • Table of Contents
  • Index by author
Email

Thank you for your interest in spreading the word on European Respiratory Society .

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants
(Your Name) has sent you a message from European Respiratory Society
(Your Name) thought you would like to see the European Respiratory Society web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants
KF Rabe, H Magnussen, G Dent
European Respiratory Journal Apr 1995, 8 (4) 637-642; DOI: 10.1183/09031936.95.08040637

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants
KF Rabe, H Magnussen, G Dent
European Respiratory Journal Apr 1995, 8 (4) 637-642; DOI: 10.1183/09031936.95.08040637
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Full Text (PDF)

Jump To

  • Article
  • Info & Metrics
  • PDF
  • Tweet Widget
  • Facebook Like
  • Google Plus One

More in this TOC Section

  • Systematic assessment of respiratory health in illness susceptible athletes
  • Identifying early PAH biomarkers in systemic sclerosis
  • Viable virus aerosol propagation by PAP circuit leak
Show more Original Articles

Related Articles

Navigate

  • Home
  • Current issue
  • Archive

About the ERJ

  • Journal information
  • Editorial board
  • Press
  • Permissions and reprints
  • Advertising

The European Respiratory Society

  • Society home
  • myERS
  • Privacy policy
  • Accessibility

ERS publications

  • European Respiratory Journal
  • ERJ Open Research
  • European Respiratory Review
  • Breathe
  • ERS books online
  • ERS Bookshop

Help

  • Feedback

For authors

  • Instructions for authors
  • Publication ethics and malpractice
  • Submit a manuscript

For readers

  • Alerts
  • Subjects
  • Podcasts
  • RSS

Subscriptions

  • Accessing the ERS publications

Contact us

European Respiratory Society
442 Glossop Road
Sheffield S10 2PX
United Kingdom
Tel: +44 114 2672860
Email: journals@ersnet.org

ISSN

Print ISSN:  0903-1936
Online ISSN: 1399-3003

Copyright © 2023 by the European Respiratory Society