Skip to main content

Main menu

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • COVID-19 submission information
    • Peer reviewer login
  • Alerts
  • Subscriptions
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

User menu

  • Log in
  • Subscribe
  • Contact Us
  • My Cart

Search

  • Advanced search
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

Login

European Respiratory Society

Advanced Search

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • COVID-19 submission information
    • Peer reviewer login
  • Alerts
  • Subscriptions

Respiratory mechanics studied by forced oscillations during artificial ventilation

R Peslin, J Felicio da Silva, C Duvivier, F Chabot
European Respiratory Journal 1993 6: 772-784; DOI: 10.1183/09031936.93.06060772
R Peslin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Felicio da Silva
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Duvivier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Chabot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Potential advantages of the forced oscillation technique over other methods for monitoring total respiratory mechanics during artificial ventilation are that it does not require patient relaxation, and that additional information may be derived from the frequency dependence of the real (Re) and imaginary (Im) parts of respiratory impedance. We wanted to assess feasibility and usefulness of the forced oscillation technique in this setting and therefore used the approach in 17 intubated patients, mechanically ventilated for acute respiratory failure. Sinusoidal pressure oscillations at 5, 10 and 20 Hz were applied at the airway opening, using a specially devised loudspeaker-type generator placed in parallel with the ventilator. Real and imaginary parts were corrected for the flow-dependent impedance of the endotracheal tube; they usually exhibited large variations during the respiratory cycle, and were computed separately for the inspiratory and expiratory phases. In many instances the real part was larger during inspiration, probably due to the larger respiratory flow, and decreased with increasing frequency. The imaginary part of respiratory impedance usually increased with increasing frequency during expiration, as expected for a predominately elastic system, but often varied little, or even decreased, with increasing frequency during inspiration. In most patients, the data were inconsistent with the usual resistance-inertance-compliance model. A much better fit was obtained with a model featuring central airways and a peripheral pathway in parallel with bronchial compliance. The results obtained with the latter model suggest that dynamic airway compression occurred during passive expiration in a number of patients. We conclude that the use of forced oscillation is relatively easy to implement during mechanical ventilation, that it allows the study of respiratory mechanics at various points in the respiratory cycle, and may help in detecting expiratory flow limitation.

PreviousNext
Back to top
Vol 6 Issue 6 Table of Contents
  • Table of Contents
  • Index by author
Email

Thank you for your interest in spreading the word on European Respiratory Society .

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Respiratory mechanics studied by forced oscillations during artificial ventilation
(Your Name) has sent you a message from European Respiratory Society
(Your Name) thought you would like to see the European Respiratory Society web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Respiratory mechanics studied by forced oscillations during artificial ventilation
R Peslin, J Felicio da Silva, C Duvivier, F Chabot
European Respiratory Journal Jun 1993, 6 (6) 772-784; DOI: 10.1183/09031936.93.06060772

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Respiratory mechanics studied by forced oscillations during artificial ventilation
R Peslin, J Felicio da Silva, C Duvivier, F Chabot
European Respiratory Journal Jun 1993, 6 (6) 772-784; DOI: 10.1183/09031936.93.06060772
Reddit logo Technorati logo Twitter logo Connotea logo Facebook logo Mendeley logo
Full Text (PDF)

Jump To

  • Article
  • Info & Metrics
  • PDF
  • Tweet Widget
  • Facebook Like
  • Google Plus One

More in this TOC Section

  • Ambulatory management of secondary spontaneous pneumothorax
  • Systematic assessment of respiratory health in illness susceptible athletes
  • Identifying early PAH biomarkers in systemic sclerosis
Show more Original Articles

Related Articles

Navigate

  • Home
  • Current issue
  • Archive

About the ERJ

  • Journal information
  • Editorial board
  • Press
  • Permissions and reprints
  • Advertising

The European Respiratory Society

  • Society home
  • myERS
  • Privacy policy
  • Accessibility

ERS publications

  • European Respiratory Journal
  • ERJ Open Research
  • European Respiratory Review
  • Breathe
  • ERS books online
  • ERS Bookshop

Help

  • Feedback

For authors

  • Instructions for authors
  • Publication ethics and malpractice
  • Submit a manuscript

For readers

  • Alerts
  • Subjects
  • Podcasts
  • RSS

Subscriptions

  • Accessing the ERS publications

Contact us

European Respiratory Society
442 Glossop Road
Sheffield S10 2PX
United Kingdom
Tel: +44 114 2672860
Email: journals@ersnet.org

ISSN

Print ISSN:  0903-1936
Online ISSN: 1399-3003

Copyright © 2023 by the European Respiratory Society