
A multi-omics approach to delineate sputum
microbiome-associated asthma inflammatory phenotypes

To the Editor:

Asthma is a heterogeneous disease with multiple clinical presentations (phenotypes) [1]. Neutrophilic
asthma is characterised by increased sputum neutrophils and generally has a poor response to
corticosteroids and limited other therapeutic options. Neutrophilia originates from different factors,
including the defective resolution of inflammation or bacterial infections [2]. An association between
airway bacterial imbalance (disturbance) and the neutrophilic phenotype has been reported [3], suggesting
that airway microbiota composition is involved in neutrophilic asthma. Rather than being a separate
entity [4], neutrophilic asthma may be in part, an alliance between innate immunity and microbiota
composition that prompts protective mechanisms against invading pathogens [2].

In the Unbiased BIOmarkers in PREDiction of respiratory disease outcomes (U-BIOPRED) study, adults
with severe asthma were classified into two clusters (phenotypes) based on the sputum microbiome [3].
The microbiome-driven cluster 2 (C2) showed relatively worse asthma outcomes, sputum neutrophilia and
microbial imbalance (reduced microbial diversity and commensals and enrichment of pathogenic bacteria,
particularly Haemophilus influenzae and Moraxella catarrhalis) compared with cluster 1 (C1). We
investigated the underlying molecular mechanisms of microbiome-driven phenotypes by investigating
differences in sputum eicosanoids, transcriptomics, and proteomics to reveal potential targets for diagnosis
and treatment.

Sputum omics, including eicosanoids, transcriptomics, and SomaScan® proteomics, were assayed as
described previously [3, 5, 6]. C2 was compared with C1 patients, mild–moderate asthma patients (MM),
and healthy controls (H) according to a panel of 11-eicosanoids and Shannon metagenomics α-diversity
using Kruskal–Wallis H test. C2 and C1 were compared by sputum transcriptomics and proteomics using
linear models for microarray data (limma) analysis after adjusting for age, sex and oral corticosteroid
intake. Pathway enrichment analysis for the sputum differential transcriptome was performed by gene set
enrichment analysis (Gage R package) using two databases for Homo sapiens; the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database and the Molecular Signatures Database (MSigDB) Hallmark gene
sets. A similar analysis was also performed comparing C2 against MM and H groups. Multiple testing was
adjusted for using Benjamini Hochberg false discovery rate correction and an α (q-value) <0.05 was
considered significant.

The sputum 11-dehydrothromboxane B2 and prostaglandin (PG) E2 (but not leukotriene (LT) B4) levels
were significantly elevated in C2 compared to C1 subjects (q<0.05) (figure 1a), consistent with sputum
PTGS2 gene upregulation in C2 (log2 fold change (FC) 1.1; q<0.05). Furthermore, the levels of
15-hydroxyeicosatetraenoic acid (HETE), LTE4 and PGD2 were elevated in C2 compared with MM and/or
H groups. These findings were associated with decreased Shannon alpha-diversity in C2 compared to other
groups (p<0.001) (figure 1b), consistent with the increase in the inflammatory signal with the increased
severity level in the groups.

A total of 2578 differentially expressed genes (DEGs; q<0.05) were found to be different between C2 and
C1, of which 194 genes had a least a two-FC (figure 1c). Several upregulated DEGs were related to
immune regulation and inflammation, particularly tumour necrosis factor (TNF)-α and related regulatory
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genes (TNFAIP-6, TNFAIP3, TNFSF10, TNFRSF10 and TNFSF14); interleukins (ILs) and related
regulatory genes (IL18R1, IL18RAP, IL1R1, IL1R2, IL1B, IRAK2, IRAK3, IL6 and IL6R); Toll-like
receptors (TLRs; e.g. TLR2, TLR4 and TLR10); and inflammasomes (e.g. NLRP3, NLRP12 and NLRC5) in
C2 relative to C1. Similar DEGs were significantly upregulated in C2 compared to MM and H groups.
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FIGURE 1 a) Box and whisker plots showing differences in sputum eicosanoids lipidomics between severe asthma microbiome-driven cluster 2 (C2;
n=22), severe asthma microbiome-driven cluster 1 (C1; n=75), mild–moderate asthma (MM; n=46) and healthy controls (H; n=47). A panel of
11-eicosanoids was tested (namely; 11-dehydro thromboxane (TX) B2, 12-hydroxyeicosatetraenoic acid (12-HETE), 15-HETE, 5-HETE, 6-keto
prostaglandin (PG) F1α, leukotriene (LT) B4, LTE4, PGD2, PGE2, and tetranor PGDM and PGEM). q-values were computed using the Kruskal–Wallis
H-test followed by Benjamini Hochberg false discovery rate (FDR) correction, and only eicosanoids with q-values <0.05 were shown. Pairwise
differences between the groups (p-values) were computed using the Mann–Whitney U-test. b) Box and whisker plot showing differences in
metagenomics Shannon α-diversity between C2 (n=25), C1 (n=75), MM (n=24) and H (n=23) groups. Overall p-value was computed using the
Kruskal–Wallis H-test and pairwise differences between the groups (p-values) were computed using the Mann–Whitney U-test. c) Differentially
expressed genes (DEGs) between C2 (n=23) and C1 (n=61). Positive log2 fold change represents over-expressed sputum genes in C2 patients relative
to C1, while negative log2 fold change represents down-expression in C2. DEGs with a q-value <0.05 are highlighted. Only the top 75 DEGs, with at
least two-fold change, were labelled. Similar DEGs (q-values<0.05) were observed when C2 was compared independently to MM (n=20), and H
(n=16) groups (not shown). d) Differentially abundant proteins (DAPs) between C2 (n=13) and C1 (n=61). Positive log2 fold change represents
over-abundant sputum proteins in C2 patients relative to C1, while negative log2 fold change represents down-abundance in C2. DAPs with a
q-value <0.05 are highlighted. Only the top DAPs, with at least two-fold change, were labelled. Similar DAPs (q-values <0.05) were observed when
C2 was compared independently to MM (n=20), and H (n=21) groups (not shown). e) Up- and down-regulated KEGG (Kyoto Encyclopedia of Genes
and Genomes) gene expression pathways in C2 relative to C1 based on sputum gene differential expression. Mean statistics: mean individual
statistics from multiple single array-based gene set tests calculated using the gage R package, where its absolute value estimates the magnitude
changes of gene-set level, and its sign indicates the direction of the changes. The figure only depicts the statistically significant pathways, in which
the ones that passed the multiple testing correction (q-values <0.05) are depicted. f ) Up- and down-regulated Hallmark gene expression pathways
in C2 relative to C1 based on sputum gene differential expression. The figure only depicts the statistically significant pathways, in which the ones
that passed the multiple testing correction (q-values <0.05) are depicted.
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Upregulated KEGG pathways in C2 mainly related to pathogen fighting, inflammation and innate
immune-regulation mechanisms such as natural killer cell-mediated cytotoxicity, chemokine, NOD-, Toll-,
and RIG-I-like receptor signalling pathways (q<0.05) (figure 1e). Downregulated KEGG pathways in C2
were related to cell proliferation and growth, including ribosome biogenesis, DNA replication and repair;
fatty acid, amino acid, nucleotide and carbohydrate metabolism; and cellular degradation and catabolism
(lysosome, peroxisome and proteasome). The Hallmark gene sets supporting KEGG analysis including
up-regulation of immuno- and inflammatory pathways in C2, such as TNF-α signalling via nuclear factor
(NF)κB, interferon (IFN)-α, IFN-γ, inflammatory response, IL-6 JAK-STAT3 ( Janus kinase-signal
transducer and activator of transcription) signalling, and apoptosis (figure 1f). Downregulated pathways
included oxidative phosphorylation (OXPHOS), reactive oxygen species (ROS), DNA repair, cell cycle,
proliferation and growth, peroxisome, and metabolism. Similar upregulated and downregulated pathways
were significant in C2 compared to MM and H groups. Additional KEGG/Hallmark upregulated pathways
in C2 relative to MM and H groups were hypoxia, JAK-STAT, MAPK (mitogen-activated protein kinase),
T-cell, KRAS and IL2 STAT5 signalling (data not shown).

36 differentially abundant proteins (DAPs) were significant (q<0.05) between C2 and C1, of whom 14
proteins had at least a two-FC (figure 1d). Upregulated DAPs in C2 (TSG-6, IL-17RA, IP-10, granulysin,
ILT-4, PBEF, TLR4:MD-2 complex, MMP-10, NKp46, and IGFIR) were related to neutrophilia,
inflammation, and/or Th17 and Th1 mediated pathways. Similar DAPs were significant when C2 patients
were compared to MM and H groups. Additional enriched (pro)inflammatory DAPs were found in C2
relative to MM and/or H groups (q<0.05), including CRP, light, protein-S, azurocidin, PGRP-S, TIMP-2,
IL-8, Notch1, MMP1, MMP2 and C5a.

The bacterial imbalance in C2 was associated with sputum neutrophilia, suggesting an immune-
modulatory response to fight clinical/subclinical infections, potentially resulting in more inflamed/
obstructed airways [7] with worse lung function parameters, as observed in C2 patients. Interestingly,
sputum macrophages were significantly decreased in C2 compared to C1, consistent with a defective
immune capacity to adequately eliminate pathogenic micro-organisms [8]. Most of the elevated signalling
eicosanoids molecules in C2 are proinflammatory and/or induce bronchoconstriction [9], which may
partly explain the reduced lung function in the relatively more severe C2 cluster. In addition, sputum
PGE2 and PGD2 regulate neutrophils and/or Th17 and Th1 pathways [10], suggesting that their elevated
levels in C2 patients might be driving these clinical features. PGE2 suppresses phagocytosis by airway
macrophages in asthma [11], consistent with our sputum pathway enrichment analysis showing that C2
patients had down-regulated lysosome and ROS pathways, which are critical in pathogen fighting [12],
relative to C1.

Many of the observed DEGs, DAPs, and pathways are implicated in immune regulation and/or are
characteristic of the neutrophilic asthma signature [7] distinguishing C2 patients. TNF-α was markedly
upregulated in C2, consistent with what was found in the Haemophilus-enriched cluster in patients with
asthma and COPD [13]. Upregulation of the interferon pathways was observed in patients with C2, and
IFN-γ has been shown to decrease epithelial barrier function and enhance neutrophil transmigration [14].
Impaired barrier function could render the airway mucosa of C2 subjects vulnerable to pathogenic bacterial
infections. Our metagenomics analysis did not detect key RNA viruses, such as RV16, whose presence at a
subclinical level could enhance RIG-I and IFN-γ pathways.

In contrast, downregulated pathways showed defective cell growth, proliferation, metabolism and DNA
repair, suggesting an impaired capacity to repair inflamed cells and maintain homeostasis. Moreover, C2
exhibited downregulation of OXPHOS, tricarboxylic acid cycle, and ROS pathways suggesting
mitochondrial dysfunction [15]. These results support previous data where neutrophilic inflammation was
associated with reduced OXPHOS gene expression and mitochondrial dysfunction in bronchial epithelial
cells [16].

These findings reveal potential targets for the C2 microbiome-driven asthma phenotype, which might
constitute a selected subtype within corticosteroid-resistant asthmatics. Therapeutic options for this cluster
might be antibiotics (e.g. macrolides) or phage therapy. In addition, the dysregulated neutrophilic and
cytokines/chemokines might be diagnostic/therapeutic targets in C2 patients [7]. Differing biological
pathways and mediators involved in these patients suggest that pharmacotherapies targeting multiple
mechanisms might be required. This also suggests neutrophilic asthma is not a single phenotype [4] and
underlying mechanisms should be considered to optimise treatment.
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