
The instructive extracellular matrix of
the lung: basic composition and
alterations in chronic lung disease

Gerald Burgstaller1, Bettina Oehrle1, Michael Gerckens1, Eric S. White 2,
Herbert B. Schiller1 and Oliver Eickelberg 3

Affiliations:
1Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and
Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany.
2Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan
Medical School, Ann Arbor, MI, USA.
3Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA.

Correspondence:
Gerald Burgstaller, Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians
University Munich, University Hospital Grosshadern, Max-Lebsche-Platz 31, Munich, Germany.
E-mail: gerald.burgstaller@helmholtz-muenchen.de

@ERSpublications
Molecular/biomechanical alterations within ECM in chronic lung diseases direct cellular function/
differentiation http://ow.ly/9GrY30c0LJG

Cite this article as: Burgstaller G, Oehrle B, Gerckens M, et al. The instructive extracellular matrix of the
lung: basic composition and alterations in chronic lung disease. Eur Respir J 2017; 50: 1601805 [https://doi.
org/10.1183/13993003.01805-2016].

ABSTRACT The pulmonary extracellular matrix (ECM) determines the tissue architecture of the lung,
and provides mechanical stability and elastic recoil, which are essential for physiological lung function.
Biochemical and biomechanical signals initiated by the ECM direct cellular function and differentiation,
and thus play a decisive role in lung development, tissue remodelling processes and maintenance of adult
homeostasis. Recent proteomic studies have demonstrated that at least 150 different ECM proteins,
glycosaminoglycans and modifying enzymes are expressed in the lung, and these assemble into intricate
composite biomaterials. These highly insoluble assemblies of interacting ECM proteins and their glycan
modifications can act as a solid phase-binding interface for hundreds of secreted proteins, which creates
an information-rich signalling template for cell function and differentiation. Dynamic changes within the
ECM that occur upon injury or with ageing are associated with several chronic lung diseases. In this
review, we summarise the available data about the structure and function of the pulmonary ECM, and
highlight changes that occur in idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension
(PAH), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. We discuss potential
mechanisms of ECM remodelling and modification, which we believe are relevant for future diagnosis and
treatment of chronic lung disease.
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Part A: the pulmonary ECM
The evolution of complex tissues in higher organisms is accompanied by an expansion in protein diversity
and structural organisation in the ECM [1], as well as an expansion of diversity of ECM receptors on cells.
As in all other organ systems, the pulmonary ECM is organised into two main structural types:
1) basement membranes, which are thin sheets of glycoproteins that cover the basal side of epithelia and
endothelia, and surround muscle, fat and peripheral nerve cells; and 2) interstitial matrices, which form a
loose and fibril-like meshwork that interconnects structural cell types within tissues, and thereby
maintains the three-dimensional (3D) cohesiveness and biomechanical characteristics of the lung [2]. Both
basement membranes and interstitial matrices form tissue-specific “niches” that influence the stemness
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FIGURE 1 Extracellular matrix (ECM) proteome of the adult healthy murine lung. a) We used our recently
published proteomic dataset of murine lung proteomes to calculate the relative protein mass fraction of the
indicated gene categories. The MS intensities of the proteins within the depicted gene categories were
expressed as parts per million fraction of the total MS intensity of all proteins. b–d) To determine the relative
copy numbers of ECM proteins in the lung proteome, MS intensities were normalised to the theoretical
number of tryptic peptides (protein size normalisation; iBAQ). We used this protein copy number estimation to
rank collagens (b), proteoglycans (c) and glycoproteins (d) by their abundance. MS: mass spectrometry; iBAQ:
intensity-based absolute quantification.
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and differentiation of progenitor/stem cell populations, as well as the proper function of tissue/
compartment-specific differentiated cell types.

Unravelling the matrisome
Based on bioinformatic analysis of the available mammalian genome, the number of core structural
components of the entire mammalian ECM is predicted to include ∼300 proteins (core matrisome) [3, 4].
In addition, the ECM associates with and serves as a reservoir for a large number of secreted proteins,
such as growth factors, ECM-modifying enzymes or other ECM-associated proteins, which do not
contribute to the structure of ECM but affect its function as an instructing “niche” (matrisome-associated
proteins). Owing to their complex biochemical properties (insolubility, high molecular weight and high
degree of protein cross-linking), a detailed analysis of ECM proteins used to be very challenging [5];
however recent progress in mass spectrometry (MS) equipment and quantification algorithms has, for the
first time, enabled a comprehensive analysis of ECM proteomes from various tissues [6–13]. Label-free
protein quantification by MS not only allows relative comparison of proteins across samples and
experimental conditions, but also allows estimation of absolute amounts [14]. Using this approach, we
analysed our recently published proteomic dataset of the mouse lung proteome [12] and ranked the
relative abundance of core matrisome proteins, providing an in-depth ECM expression profile of healthy
mouse lung (figure 1).

Composition of the ECM
Collagens constitute a major portion of the protein content of the lung [15], and are severely altered in
many lung diseases (figure 2). The fibrillar collagens (types I, II, III, V and XI), which have great tensile
strength but low elasticity, contribute to the overarching architecture of the lung [16, 17], whereas the large
elastic fibres, which are characterised by low tensile strength and high elasticity, provide the lung with its
necessary compliance and elastic recoil. Elastic fibres are composed of two distinct components: the ECM
protein elastin is found in its crosslinked form in the inner core of elastic fibres, whereas the outer
periphery of elastic fibres contains 10–15 nm-sized microfibrils [18].

The major structural components of microfibrils are the large glycoproteins fibrillin-1, -2 and -3 [19].
Additionally, other proteins such as microfibril-associated glycoproteins, fibulins, elastin microfibril
interface-located proteins (EMILINs) and members of the elastin-crosslinking lysyl oxidase (LOX) family
are associated with microfibrils or with elastin itself [18]. Interestingly, microfibrillar-associated protein 4
(MFAP4) was the most abundant glycoprotein found in our matrisome dataset of healthy adult mouse
lungs (figure 1) [12]. In humans, high expression of MFAP4 has been shown not only for lung, but also
for other highly elastic tissues such as heart and intestine [20]. The biological function of MFAP4 is
largely unknown; although it has been identified as a serum biomarker for haptic fibrosis, it fails as a
biomarker for lung fibrosis [21].

The interstitial ECM of the alveoli is composed of a relaxed meshwork, largely based on type I and III
collagens and elastin as important core proteins [22, 23]. The 3D arrangement of this intertwined fibre
network allows nonlinear stress–strain behaviours (hysteresis and viscoelasticity) that are a characteristic
property of soft connective tissues [24]. During respiration, the energy dissipation that causes hysteresis
and viscoelasticity in the lung parenchyma is driven by fibre–fibre contacts in the collagen–elastin ECM,
although contractile cell types and surfactant in the air–liquid interface may also contribute to these effects [17].
In addition to their biomechanical functions, elastic fibre components, such as fibulins and EMILINs,
govern cell–ECM adhesion by interacting with heteromeric transmembrane integrin receptors [25, 26]. In
contrast to EMILINs, which bind integrins via their gC1q-1 domain, fibulin-5 binds integrins via an
evolutionally conserved RGD (arginine–glycine–aspartic acid) sequence. This RGD tripeptide-binding
motif is characteristic of other ECM glycoproteins, including fibronectin, vitronectin, osteopontin,
collagens, thrombospondins, fibrinogen and von Willebrand factor, all of which mediate cell-ECM
adhesion via integrin receptors [27]. Apart from fibrous collagens and glycoproteins, proteoglycans (PGs),
which consist of a core protein component covalently linked to sulfated polysaccharides or
glycosaminoglycans (GAGs), are major constituents of the ECM [28]. Owing to their high polysaccharide
content, PGs are hydrophilic, thereby enabling hydrogel formation and contributing to the viscoelasticity
of the lung. PGs contain the basement membrane constituents perlecan and agrin, as well as the
hyalectans versican, aggrecan, neurocan, brevican and the subclass of small-leucine rich proteoglycans,
including its most prominent members, decorin, biglycan and lumican [29]. Decorin, biglycan and lumican
were among the most abundant proteoglycans in our matrisome dataset of healthy adult mouse lung
(figure 1) [12]. In vitro, both human decorin and biglycan are able to bind to the profibrotic cytokine
transforming growth factor-β1 (TGF-β1), but in vivo, only decorin but not biglycan was shown to inhibit
the fibrogenic effect of TGF-β1 [30]. Furthermore, decorin reportedly interacts with various

https://doi.org/10.1183/13993003.01805-2016 3

LUNG DISEASE | G. BURGSTALLER ET AL.



metalloproteases and can act as a tumour suppressor by attenuating tumour growth, migration and
angiogenesis [31].

Post-translational modifications of ECM components
Post-translational modifications (PTMs), e.g. enzymatic and chemical crosslinking, transglutamination,
glycation and glycosylation, oxidation, and citrullination, are known to affect the structural and/or
functional diversity of ECM proteins [32]. For instance, enzymatic cross-linking of collagen and elastin, a
substantial step during their biosynthesis, which is mainly exerted by the enzymes of the lysyl oxidase
family (LOX, LOXL1–4) and the transglutaminase family members (TG1–7, FXIII-A), provides ECM
components with their characteristic tensile strength [33–35]. Furthermore, the enzymatic (glycosylation)
or non-enzymatic (glycation) addition of sugars to proteins also impacts on the biomechanics and
function of the ECM. In particular, glycation is currently recognised as a factor in ageing-related fibrosis.
This process causes the formation and accumulation of advanced glycation end-products (AGEs).
Aberrant glycation processes have been associated with increased tissue stiffness, e.g. in experimental AGE
formation in tendons, which were shown to reduce fibre sliding while increasing fibre stretching [36].
Carbamylation, which is a non-enzymatic addition of urea to isocyanic acid residues of proteins, negatively
influences the stability and conformation of collagen I triple helices, as well as their degradation by MMPs [37].
The oxidation of ECM proteins by reactive oxygen species (ROS) further modulates qualities of the ECM
by altering its production, turnover and modifications, as well as having an impact on cell–ECM
interactions [38]. Additionally, serum levels of oxidative stress markers have been found to be elevated in
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formation. b) Healthy interstitial ECM is maintained by the activity of resident fibroblasts and represents a loose meshwork of collagens, elastin
and fibronectin anchored to the basal membrane of the epithelial cell layer. c) In idiopathic pulmonary fibrosis (IPF), fibroblasts transdifferentiate
to highly contractile myofibroblasts, which deposit high levels of ECM molecules into the interstitium and dramatically increase ECM rigidity by
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patients with IPF [39] and in the breath condensates of patients with asthma [40]. The ECM can also be
modulated by citrullination, an enzymatic deamination reaction of arginine that affects cell adhesion [41].
For a more comprehensive overview of PTMs in the ECM and their roles in disease, we refer the reader to
these additional reviews [32, 42–45]. Taken together, the structural and functional properties of the
pulmonary ECM can be modified by PTMs, which are considered an important potential contributor to
lung disease, as outlined in detail in the following sections.

Biomechanics and cell–ECM crosstalk
All cells are attached transiently or permanently to some form of ECM via cell adhesion receptors, most
prominently the integrin family of transmembrane heterodimeric receptors [46, 47]. Cells can use integrins
to probe both the biochemical and topographical characteristics of their environment [47, 48]. Signal
transduction emanating from cell–ECM adhesions controls cellular behaviour, such as motility and
spreading, morphology, survival, proliferation and differentiation [1, 22]. These signalling events depend
on a multitude of proteins that are recruited to plasma membrane integrin clusters, which are collectively
termed the “adhesome” [49]. Recent proteomic studies have delineated the overall protein composition of
the adhesome and its dynamics under the influence of mechanical forces [50–55]. When cells encounter
their extracellular substrate, they react to the stiffness of that substrate in multiple ways, including
immediate cell shape and activity changes, as well as long-term gene expression and cell-identity changes.
This mechano-reciprocity is generated by feedback connections between cell–ECM adhesions and the
cytoskeleton, which tune the strength of contractile forces to an equilibrium between the applied force and
the tensile strength of the ECM substrate [47]. In this process, the structure and organisation of the
cytoskeleton is altered, and this has been shown to induce long-term gene expression changes [56]. The
precise molecular nature of many elements in these feedback connections is currently unknown, and it is
also unclear to what extent the equilibrium of mechano-sensing to mechano-response differs between cell
types and how such differences can be programmed. Importantly, it is well appreciated that
mechano-sensitive signalling pathways are important in the pathophysiology of fibrotic diseases and
cancer, both of which exhibit dynamic changes in ECM composition and mechanical properties during
disease progression [57–61]. In particular, pathologically elevated ECM deposition, accompanied by
covalent cross-linking and ECM remodelling, generates a dramatic increase in ECM stiffness, thus causing
a mechanical gradient between pathological and normal tissue. Stiffness gradients within the ECM dictate
the migratory behaviour of cells in a process called durotaxis. Durotaxis seems to be a rather general
phenomenon, as many cell types, including fibroblasts, mesenchymal stem cells (MSCs), myoblasts and
cancer cells, have been shown to migrate along stiffness gradients [62–65]. Furthermore, ECM stiffness
influences fibroblast spreading, contractility and differentiation [66, 67]. When grown on soft matrices,
fibroblasts and many other cells usually exhibit low contractile forces together with reduced spreading and
proliferation [68, 69]. ECM rigidity also affects differentiation of MSCs, as osteogenic and adipogenic
lineages appear on rigid and soft surfaces, respectively [66]. Primary cultures of alveolar epithelial type II
(ATII) cells, which are thought to possess stem-cell potential and are capable of long-term self-renewal in
the adult lung, alter their morphology and functional characteristics (surfactant synthesis and secretion)
dependent on the ECM substrate used in culture [28]. In an in vitro study, primary human alveolar
macrophages, which mediate lung fibrosis, showed increases in phagocytosis and changes in transcription
and phenotype when cultured on rigid ECM [70]. Furthermore, for a monolayer of endothelial cells, it was
demonstrated that their cultivation on stiffer ECM had negative effects on the monolayer integrity, thus
advocating for a significance of barrier permeability in respect to transmigration of leukocytes [71].

The reservoir function of the ECM
The ECM serves as a reservoir for a number of growth factors and cytokines, which are crucial for cell
differentiation and proliferation [4, 22, 72]. The association of factors such as fibroblast growth factor
(FGF), hepatocyte growth factor, and latent and active TGF-β1 (for a complete list we refer the reader to a
previously published table [72]) with the ECM poses some consequences: ECM-bound factors 1) can be
latent, masked or have a different activity compared with their soluble form, 2) can form immobilised
gradients crucial for cell migration, 3) might, as imprints of former cellular activity, have a memory
function for instructing cellular behaviour, 4) facilitate cell adhesion and cell growth, and 5) as stored
factors, may be activated rapidly by proteolytic release and generate local signals that are independent of
slow processes such as gene expression [72, 73]. Degradation of the ECM is a pivotal event in tissue
remodelling, and in this process the zinc-dependent proteinases (metzincins) play a decisive role.

ECM-degrading enzymes
This superfamily of metalloproteinases comprises the matrix metalloproteinases (MMPs) and adamalysins.
MMPs are a family of 25 zinc-dependent endopeptidases. These enzymes are able to cleave all ECM
components [74] and basement membranes [75]. MMPs are secreted in a highly concerted process along
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with their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs) [76]. Adamalysins comprise the
disintegrin and metalloproteinases (ADAMs) and ADAMs with a thrombospondin motif (ADAMTS).
Owing to the capability of ADAMs to shred cytokines, growth factors and FAS ligand, a potential clinical
application has been ascribed to them in fibrosis, cancer, inflammation and neurodegeneration [77]. In
fibrotic lung diseases, the production and secretion of MMPs and TIMPs has been attributed to
macrophages [78], fibrocytes, endothelial cells and fibroblasts [79], and strong expression of MMPs,
especially MMP-1 and MMP-7, has also been observed in bronchiolar and alveolar epithelial cells [80].
For a more detailed discussion about molecular players in ECM degradation and remodelling, the reader is
referred to the excellent review by LU et al. [81].

Part B: ECM remodelling processes in chronic lung diseases
IPF
Pathogenesis and tissue remodelling
While the aetiology of IPF remains largely unknown, IPF affects roughly five million people worldwide.
Until recently, lung transplantation was the only effective therapy. Recently, two Food and Drug
Administration (FDA)-approved drugs, pirfenidone and nintedanib, which have pleiotropic effects on cells
including inhibition of ECM production, have been shown to slow the rate of decline in lung function [82, 83].
In IPF, repetitive lung injury and subsequent repair mechanisms lead to an ongoing destruction of elastic
parenchymal lung tissue, which is constantly replaced by stiff scar tissue, comprising large and condensed
cell–ECM aggregates known as fibroblastic foci within the pulmonary interstitium (figure 2c). Progressive
tissue remodelling leads to traction bronchiectasis, thickened interlobular septae and subpleural
honeycombing, which can be imaged by computed axial tomography (CAT) [84]. All these microscopic
and macroscopic changes contribute to a progressive loss in gas exchange, with subsequent deteriorating
lung function, breathlessness and finally respiratory failure leading to death [85].

Myofibroblasts
Fibroblastic foci contain activated fibroblasts and/or highly contractile myofibroblasts, which are mainly
characterised by their neo-expression of α-smooth muscle actin (α-SMA) and its incorporation into
contractile stress fibres. Apart from their contractile features, myofibroblasts produce high amounts of
ECM molecules in response to pro-fibrotic stimuli that are thought to result from imbalanced repair
mechanisms of the alveolar and bronchiolar epithelia following repeated microinjuries and inflammatory
processes [86] (figure 2c). The origin of myofibroblasts in fibrotic foci is still under heavy debate. In
various studies, myofibroblasts in the fibrotic lung have been shown to stem from bone marrow-derived
progenitor cells [87], peripheral blood circulating fibrocytes [88, 89], alveolar epithelial cells undergoing
epithelial–mesenchymal transition [90], resident fibroblasts [91] and pericytes [92]. Quite controversially,
by applying lineage tracing, a different study described an as yet unidentified population of resident
stromal cells within fibrotic foci as the source of myofibroblasts, but ruled out pericytes and epithelial cells
as sources [93].

Instructiveness
As the myofibroblast is considered a hallmark of IPF, it is conceivable that the ECM produced by the
myofibroblast is an instructive disease component, which perpetuates disease progression. Indeed, by
culturing fibroblasts originating from either IPF or healthy control lungs on either fibrotic or healthy
decellularised lung tissue, PARKER et al. demonstrated that the aberrant ECM microenvironment in IPF
predominantly drives changes in gene and protein expression, rather than intrinsic cellular alterations [94].
The process of decellularisation and successful recellularisation of whole organs, ideally with autologous
stem or progenitor cells, was tested as a potential surrogate in lung transplantation medicine [95–97]. Even
cadaveric human lungs, which were taken from individuals with chronic lung diseases, have been
investigated for possible usage in ex vivo tissue engineering [98]. However, in light of current findings that
decellularised ECM scaffolds from patients with IPF alter the transcriptome and translatome of reseeded
fibroblasts, it remains an intriguing open question as to whether such surrogates derived from pathological
lung tissues might be usable for lung transplantation at all.

Mechanophysiology
The current concepts in the field assume crucial functions of specific ECM proteins in fine-tuning
signalling pathways by their capacity to modulate growth factor signalling [99–101], or important effects of
tissue stiffening on disease progression. ECM rigidity in fibrotic disorders is increased by enzymatic
covalent crosslinking of collagen and elastin by LOX and TG family members [34, 35]. In IPF, expression
of lysyl oxidase-like 2 (LOXL2) and TG2 has been shown to be increased in the serum and lungs,
respectively, of patients with IPF [102, 103]. The stiffness of decellularised IPF tissue is indeed higher than
normal, as shown by atomic force microscopy [13], and correspondingly, the activity of non-muscle
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myosin-II, which drives cell contractility, was shown to be also higher in fibrotic areas of patients with IPF [57].
Thus, the activity and survival of activated fibroblasts in fibrotic diseases may be largely controlled by
mechanical signals. Indeed, inhibition of myosin-II-mediated cell contractility using a Rho-kinase inhibitor
induced myofibroblast apoptosis and ameliorated experimental lung fibrosis [57]. TSCHUMPERLIN and
colleagues used atomic force microscopy measurements on experimental fibrosis in bleomycin-injured
lungs to reveal a striking increase in fibrotic zones with an elastic modulus (which measures tissue stiffness
in Pascals) exceeding 2 kPa [68]. Interestingly, a physiological stiffness range (0.2–2 kPa) keeps lung
fibroblasts in a quiescent state, whereas substrates with higher stiffness (2–35 kPa), as observed in fibrotic
lungs, induce a pro-fibrogenic phenotype with high proliferation and ECM synthesis rates [68]. We have
shown that (myo)fibroblasts require a combination of α5β1-integrin and αV-integrin family heterodimers
to effectively respond to the stiffness of a fibronectin-rich tissue microenvironment as is present in tissue
fibrogenesis [50]. Interestingly, ablation of αV-family integrins reduced fibrosis in several organs, including
the lung, in experimental injury mouse models [104], which might indicated that these integrins function
in the mechano-sensing response [50] and/or TGF-β activation [105].

Proteomic ECM signatures
Future proteomic investigations of acute versus chronic models of lung injury and the ensuing fibrosis
might enable the identification of extracellular niche components that selectively drive pathology in a
permanent and progressive scarring phenotype, as seen in IPF. We performed a time-resolved proteome
study of the acute bleomycin lung injury mouse model and, based on the observed temporal kinetics of
protein abundance, we were able to predict functions of individual proteins in the early stages of tissue
repair, such as stem cell mobilisation, or late stages, such as resolution of fibrosis. Unexpected ECM
proteins that were not studied in the context of injury versus repair, and fibrosis, such as Emilin-2 and
collagen-XXVIII, were discovered to be highly upregulated 2 weeks after injury [12]. By using a
combination of stable isotope labelling, solubility fractionation of decellularised lung tissue and proteomic
analysis, DECARIS and colleagues assessed the kinetics of ECM synthesis and deposition in a bleomycin
model [106], and found that the protein synthesis rates of fibrillar collagens (types I, III and V) were
dramatically increased in both the soluble and insoluble fractions during the late fibrotic response, whereas
the small leucine-rich proteoglycans biglycan and decorin, as well as fibronectin, were elevated in the early
fibrotic response. However, in a different MS-based ECM analysis of decellularised IPF lungs, the authors
identified an enrichment of glycosaminoclycans, matrix-Gla protein and microfibrillar-associated proteins
in the ECM of IPF lungs [13]. Conclusively, the ECM of diseased human lungs may harbour a disease-
and progression-specific combination of secreted proteins and proteolytic fragments of ECM components
(“signature”), which may not only be of great diagnostic and/or prognostic value for future precision
medicine but might also give novel insights into molecular mechanisms in disease pathogenesis.

COPD and emphysema
The pathophysiological aspects of COPD, which is mainly caused by smoke exposure, include airflow
obstruction and hyperinflation. The airflow limitation in COPD is caused by three inter-related processes:
small airway remodelling leading to a thickening of airway walls, the loss of small airways and the
enlargement of the respiratory air spaces in the alveoli, a condition called emphysema [17]. Consequently,
the transpulmonary pressure dissemination is disrupted, causing hyperinflation of the lungs. These
structural alterations cause biomechanical changes that manifest as loss of the elastic recoil of the lung. As
ECM represents the main stress-bearing component in the respiratory system, the loss of elastic recoil in
pulmonary emphysema suggests that elastin, the core component within elastic fibres, is the major target
of decomposition (figure 2d). In a mouse disease model of emphysema, both intra-tracheal instillation of
the elastolytic enzyme elastase and a deficiency of α1-antitrypsin, the main inhibitor of neutrophil elastase,
resulted in the formation of emphysema [107]. The imbalance of protease and antiprotease activity is a
widely accepted hypothesis of how tissue decomposition might occur in emphysema [108]. The release of
ECM-degrading enzymes is largely attributed to inflammatory cells, mainly macrophages, neutrophils and
T cells [109]. However, it may not be only the destruction of elastic fibres that is responsible for the
changes in lung biomechanics, as there is also experimental evidence that collagen remodelling within the
alveolar walls contributes to the structural and biomechanical changes found in pulmonary emphysema [110].
Accordingly, a thickening of collagen fibrils has been demonstrated on an ultrastructural level in humans
and in rodent mouse models [111]. This quite surprising finding is supported by in vivo evidence that
elastase degradation of ECM components can trigger collagen synthesis [112], but the described response
might also be a result of TGF-β1-producing macrophages that stimulate the collagen production of effector
cells [111]. However, different compartments of the lungs are differently affected by aberrant collagen
deposition in COPD. Whereas electron micrographs revealed a high abundance of collagen and elastin in
alveolar septal walls of emphysematous tissue [113], lower expression of collagen I was found in airways of
patients with COPD [114]. ANNONI et al. analysed the detailed composition of the ECM from patients with
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COPD compared with healthy controls in various lung compartments, and showed that in samples of
moderate COPD, there were alterations in elastic fibres, fibronectin, collagens, tenascin-C and versican
throughout all lung compartments [114]. In accordance with these findings, ROMAN et al. demonstrated
nicotine-induced upregulation of fibronectin expression both in vitro and in vivo [115]. Moreover, in vitro,
airway smooth muscle cells (ASMs) isolated from patients with COPD produced higher levels of Col8a1,
MMP1, MMP3 and MMP10 in response to cigarette smoke extract [116]. Recently, mice with a deficiency
of the ECM glycoprotein fibulin-4 were found to have increased MMP and neutrophil elastase activity in
the lungs, which led to alveolar breakdown in newborn mice and subsequently to the formation of
emphysema [117]. In COPD, expression levels of osteopontin, which is a phosphorylated acidic ECM
glycoprotein with functions in cell adhesion and migration, was found to be elevated in the sputum of
patients with COPD [118]. Increased levels of osteopontin are not specific for COPD, as similar
upregulation of osteopontin was described in the lungs and bronchoalveolar lavage fluid of patients with
IPF [119]. AGEs, which are mostly produced by inflammatory processes, were found to accumulate in the
skin of patients with COPD. This potentially implies a role of AGEs and glycation events in the early
pathological phases of COPD, although direct implication of AGEs in the ECM in vivo and in human lung
still remains unclear [120]. Furthermore, during acute exacerbations of COPD, an accelerated turnover of
ECM protein occurs, leading to protease-generated fragmentation of ECM proteins such as collagens,
versican and elastins. These blood-circulating ECM protein fingerprints might be utilised as potent
biomarkers in predicting COPD disease progression [121].

PAH
PAH is a progressive disease with a poor prognosis. The pathophysiology of PAH is characterised by an
increased workload in the right heart ventricle as a result of several processes, such as genetic
predisposition, inflammation, cell proliferation, vasoconstriction and vascular remodelling. The pulmonary
arteries are affected by persistent vasoconstriction and vascular remodelling, resulting in reduced
pulmonary arterial compliance [122]. In PAH, the whole three-layered architecture of the arterial wall
undergoes remodelling, thus leading to intimal, medial and adventitial thickening [123] (figure 2a).
Accordingly, dynamic incorporation studies using radioactive tracer revealed rapid synthesis of elastin and
collagen in pulmonary arteries during hypoxic pulmonary hypertension [124]. Furthermore, the ECM
component tenascin-C has been associated with disease progression. In patients with PAH and in
experimental disease models alike, tenascin-C correlated with smooth muscle cell (SMC) proliferation
(figure 2e) and mitogenic response to FGF2. Likewise, in fibrotic mouse lungs tenascin-C negatively
correlated with lung compliance, that is, larger amounts of this protein were associated with stiffer lung
tissue [12]. Meanwhile, a positive correlation of tenascin-C expression and SMC proliferation was found in
patients with congenital heart disease and in the monocrotaline-induced PAH rodent model [125].
However, in vitro elastin expression inversely correlated with the proliferation of SMCs [126]. Additionally,
within the thickened intima of affected vessels from lung biopsy tissues from patients with PAH, elevated
levels of fibronectin and tenascin-C were identified by immunohistochemistry and in situ hybridisation [125].
Increased deposition of GAGs such as hyaluronic acid (HA) has also been observed in remodelled
pulmonary arteries [127, 128]. Furthermore, a pathological heavy chain modification of HA, which has
also been suggested to promote leukocyte adhesion and activation, was identified in the lung tissue of
patients with PAH [129].

It is known that MMPs play a decisive role in pulmonary vascular remodelling. In vitro and in situ studies
on pulmonary arterial SMCs revealed an imbalance of MMPs and TIMPs in idiopathic PAH [130]; MMP3
was found to be down-regulated, whereas TIMP1 was up-regulated in the affected SMCs [131]. NAVE et al.
reported that lysyl oxidases are also involved in pulmonary vascular remodelling in PH, inducing massive
cross-linking of the ECM [132]. Despite the vascular wall hyperplasia and hypertrophy found in
pulmonary hypertensive lungs, these have been successfully decellularised and recellularised with
mesenchymal stem cells [133]. When successfully recellularised with stem cells, decellularised 3D ECM
scaffolds from diseased lungs might pose a valid source in clinical use to generate healthy functional
tissues. However, it is a prerequisite that the recellularisation process leads to successful remodelling of the
diseased hypertrophic ECM in the decellularised scaffolds, and at least in fibrotic diseases, the contrary
effect was observed [94].

Asthma
The pathology of asthma is characterised by chronic inflammation of submucosal regions of the small
airways of the lung, with associated goblet cell hyperplasia, augmented mucus secretion, smooth muscle
hypertrophy and bronchoconstriction (figure 2f). The lung structure is affected by airway remodelling
caused by ASM hyperplasia, with a concomitant modified ECM profile around the airway structures.
These structural alterations manifest in biomechanical dysfunctions. Accordingly, the elastic recoil of the
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lungs is diminished, which might be caused by impairment of the elastic load transmission between the
lung parenchyma and airways. Aberrant accumulation of ECM was previously found in asthmatic lungs,
with its main localisation to the submucosal and adventitial areas of both large and small airways [134].
ECM deposits, which occur even in mild asthma, include collagens I, III and V in the subepithelial region,
as well as fibronectin in the lamina reticularis of the bronchial epithelium [135] (figure 2f). Additionally,
in fatal asthma, an increase in elastic fibres, MMP-9 and MMP-12 in the large airways was reported [136].
Interestingly, the ECM composition of the central and distal airways of patients with persistent asthma
symptoms despite corticosteroid therapy (uncontrolled asthma) differs from that of patients with
corticosteroid-susceptible (controlled) asthma. In essence, in uncontrolled compared with controlled
asthma, deposition of collagen was found to be increased in the alveolar parenchyma, while versican was
increased in the central airways and decorin and biglycan were increased in both compartments [137]. The
differences between distal airway and bronchial remodelling might be based on the altered ECM secretion
status of fibroblasts derived from those different areas [138]. These findings indicate a high clinical
significance of ECM remodelling in asthma. It has been shown that in ASMs the presence of the soluble
forms of fibronectin and collagen I can decrease the contractile but increase the proliferative capacity of
ASMs, whereas culturing the cells in the presence of exogenous soluble laminin alone did not affect either
proliferation or contractility [139]. However, a mechanism explaining how ECM proteins in their soluble,
non-deposited forms differentially affect phenotype and contractile functions in ASMs remains elusive.
Thus, changes in the ECM may drive mechanisms leading to an increased growth of ASMs (figure 2f),
which is a pivotal event in the molecular pathology of asthma [140]. Furthermore, in vitro studies on
ASMs suggest that alterations in the ECM also occur on post-translational levels in asthma [140]. The
aberrant deposition of ECM components affects the biomechanical properties of the lung in different ways.
ECM deposition around airways exaggerates the narrowing of the airways and induces alterations in tissue
stiffness.

Lung cancer
The hallmarks of human cancers, which were comprehensively described by HANAHAN and WEINBERG [141],
are multistep biological capabilities, which include sustained proliferation, evasion of growth suppression,
death resistance, replicative immortality, induced angiogenesis, initiation of invasion and metastasis, and
dysregulation of cellular energetics and inflammatory processes (figure 2g). As the ECM, by its
biochemical and biophysical properties, is a regulator of the cellular responses that underlie cancer
hallmarks, studying the influence of the ECM on neoplastic progression becomes essential [142]. For
instance, small cell lung cancers (SCLCs) are surrounded by an extensive stroma of ECM, which harbours
high levels of fibronectin, laminin, collagen IV and tenascin-C [143]. Furthermore, the tumour stroma of
advanced sclerotic tumour tissue is rich in collagen I, whereas collagen III is highly abundant in less
mature stroma [144]. Translational studies have identified that in patients with SCLC tumours, which are
surrounded by an extensive stroma, the survival time was shortened, as binding of the SCLC cells to the
ECM protects the cancer cells from chemotherapy-induced apoptosis [143]. Remodelling of tumour
stroma strongly affects tissue stiffness, which in turn affects the mechano-biology of the cells and triggers
cellular responses (figure 2g). As collagen is reported to be the main contributor to tensile strength within
the lung architecture, collagen metabolism plays a decisive role in stiffening of the tumour stroma. Besides
aberrant collagen deposition and turnover, alterations in collagen cross-linking have been observed in lung
cancer. Most recently, CHEN et al. reported that tumour stroma exhibits high levels of hydroxylysine
aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links
(LCCs) [145] (figure 2g). Mechanistically, this shift from predominantly LCCs in healthy to HLCCs in
tumorous lung tissue was traced back to the enzyme lysyl hydroxylase 2 (LH2). The concomitant increase
in stroma stiffness in turn favoured tumour cell invasion and metastasis [145]. In line with these findings,
tumour cells are known to express high LOX levels, and pharmacological interventions targeting this
enzyme family repressed metastasis in tumour-bearing animals [146]. MOUW et al. showed that in breast
cancer, ECM rigidity induced miR-18a to reduce expression of phosphatase and tensin homologue
(PTEN), which in turn drove tumour progression [147]. Additionally, the increased ECM stiffness in
tumours feeds back to cells in a Rho-dependent manner, increasing the cytoskeletal tension and
stabilisation of focal adhesions [148]. As the tumour microenvironment is created by cancer and stromal
cells, activation of the stromal cells occurs in an autocrine and paracrine fashion. In particular, activated
fibroblasts, the so-called cancer-associated fibroblasts, play an essential role in tumour progression by
substantially remodelling the tumour ECM, suppressing the immune response and releasing tumour
growth-promoting factors [149]. Thus, the tumour ECM provides aberrant microenvironmental cues
favouring proliferation and metastasis as well as inhibiting apoptosis of tumour cells. Accordingly, at
primary and metastatic sites, the encapsulating tumour stroma can confer resistance to chemotherapy. It
has been demonstrated in SCLC that the adhesion of tumour cells via integrin-β1 to ECM proteins is a
crucial event in cell resistance to chemotherapy [143]. Conclusively, the pathological changes in the ECM
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of lung cancers, such as increased collagen expression, altered collagen cross-linking and subsequent
increase in tissue stiffness, are reminiscent of alterations also found in IPF, which advocates for similarities
between these two diseases. Interestingly, many pathogenic analogies between cancer and IPF are reported:
common risk factors (e.g. smoking, environmental exposure, viral infections and chronic tissue injury),
delayed apoptosis, activation of specific signalling pathways, both epigenetic and genetic changes, altered
expression of microRNAs, and aberrant cell proliferation and invasion [150–154]. There is a practical
reasoning to consider IPF a cancer-like disease, which ultimately might lead to new clinical trials with
cancer-related drugs for IPF [154].

ECM model systems
The composition of ECM and its biomechanical properties have an impact on cellular morphology [155],
motility, spreading, cell viability and apoptosis, as well as proliferation and differentiation [5]. Therefore,
as cellular behaviour and the ECM are highly interlinked, in vitro cell culture systems that exactly mimic
the physiological and pathological conditions found in vivo are needed. Multiple in vivo animal models
that reflect the pathogenesis of human lung diseases have been developed in the past. As a detailed
discussion about animal models representing lung disorders would far exceed the scope of this review, we
therefore refer the reader to a number of excellent reviews for further reading [156–162]. In particular,
studies on mesenchymal cells, which are physiologically embedded within the ECM, may profit from
in vitro, in vivo or ex vivo models that closely resemble the structure and biomechanics of pulmonary
interstitial ECM [163–165]. A variety of these 3D cell culture systems has been applied in the past [166].
The most simplified model is tissue culture plastic coated with ECM molecules. Owing to its simplified
design it can be used to study the interaction of specific ECM molecules with cells, although here the cells
are attached to a two-dimensional (2D) surface rather than being embedded within an ECM. Moreover,
the stiffness of cell culture plastic is far beyond that physiologically found in vivo; as measured by atomic
force microscopy, Young’s modulus (measured in Pascals) of cell culture plastic ranges from 2 to 4 GPa,
whereas normal lung tissue varies between 0.44 and 7.5 kPa, depending on the region measured, and
fibrotic human lung tissue from patients with IPF measures on average 16.52 kPa [13, 167, 168]. However,
mechanically tunable 2D models using synthetic acrylamide- or polyethylene glycol-based matrices yield
the ability to induce gradient formation and tight control of the ECM stiffness [166, 169]. Besides these
artificial synthesised macromolecular structures, native and engineered biopolymers, consisting of collagens [170],
elastin [171], fibrin [172] or laminin [173], are widely used for in vitro ECM model systems [174].
Basement membrane extract gels and decellularised fibroblast-derived matrices are also used nowadays [175],
and these more closely mimic the composition, 3D structure and biomechanics of physiological ECM.
However, none of these models can imitate the unique spatial geometry of pulmonary tissue. In order to
circumvent these biomimetic limitations, vibratome-sliced ex vivo matrices taken from various animal
disease models as well as from diseased human tissues can be used in their native or decellularised forms
[13, 176–178]. Ex vivo models using decellularised lung tissue will help to further mechanistically delineate
the impact of the ECM on lung pathologies. Finally, in the future, 3D bioprinting technologies or additive
manufacturing techniques might hold promising and exciting new ways of creating biocompatible ECM
scaffolds that biomechanically resemble real tissue. Such fabricated scaffolds could either be used as
tunable in vitro models to study the instructive nature of the ECM, or ultimately, when successfully
reseeded with cells, as a bioengineered tissue ready to replace diseased tissues or whole organs [179].

Conclusion and future perspectives
Chronic respiratory diseases originate from the complex interplay between environmental risk factors,
epigenetic influences and genetic influences. Adverse environmental insults during foetal and infant life
are thought to lead to enduring changes in lung structure and function. Such early life “programming”
might aberrantly remodel the ECM and consequently pave the way for the development of chronic
respiratory diseases in adulthood. The regulated remodelling of the ECM, especially in the process of
wound healing, by its resident cells, is a prerequisite for maintenance of tissue homeostasis. In pathological
events, qualities of the ECM, such as its composition and topological features, biomechanical properties,
PTMs or role as a reservoir for secreted mediators, act as instructive cues that affect the behaviour of
fibroblasts and other cell types. Once tissue homeostasis is disturbed by repeated injury and repair,
aberrant feedback mechanisms between cells and their remodelled ECM trigger a vicious cycle that leads
to disease progression. During disease progression, the interplay between cells and the ECM can be very
complex, might involve various different cell types and can take place in spatially distinct compartments.
For example, successful metastasis requires early remodelling of the ECM in the metastatic niche, which is
spatially distant from the local niche of the primary tumour, in order to assist circulating tumour cells to
engraft in distant organs [180]. Therefore, unravelling the molecular composition of the ECM in diseased
lungs by means of state-of-the-art technologies, such as MS-driven proteomics or next-generation
sequencing, is an important step towards the identification of diagnostic biomarkers for disease
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progression and therapy alike. Future attempts to develop methods for systems-level insights into the
complex functional and physical topology of the ECM in situ will be key to understanding its role in tissue
(patho)physiology. In order to see breakthroughs in the development of novel therapeutic interventions, it
is crucial to understand the complex interactions and underlying feedback mechanisms that happen
between the core matrisome, matrisome-associated factors and cells [168, 181]. Potential therapeutics for
fibrotic diseases include enzymes that target ECM stiffness by degrading abnormal ECM, as well as
antibodies that inhibit the activity of ECM cross-linking enzymes such as lysyl oxidases, and also the
activity of MMPs and TGF-β1 [73]. Furthermore, inhibitors for cellular receptors such as epidermal
growth factor receptor, or drugs targeting the mechanotransduction machinery via integrins, are currently
being tested as therapeutics in diseases such as lung cancer and fibrotic disorders [73). In addition,
molecules and pathways involved in oxidative stress responses of the lung are being discussed as potential
therapeutic targets [38]. There is also an increasing interest in using progenitor cells such as mesenchymal
stem cells, which might contain regenerative potential, as enhancers for tissue repair [168]. As of now,
however, lung transplantation remains the only valid therapy for end-stage lung diseases, but a shortage of
donor lungs and the need for intense immunosuppression to obviate allograft rejection limit their clinical
application. Therefore, bioartifical ECM scaffolds will become important elements of stem cell-based
therapies in regenerative medicine. Future efforts will determine whether synthetic (3D-printed) scaffolds
or decellularised ECM scaffolds of whole organs and their recellullarisation with autologous progenitor or
stem cells may lead to fully functional and transplantable organs. Fabricating such lung surrogates is still
far from reality, but basic research on ECM architecture and function, as well as on tissue engineering, is
likely to yield new insights for translation into clinical use.
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