Skip to main content

Main menu

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • Peer reviewer login
  • Alerts
  • Subscriptions
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

User menu

  • Log in
  • Subscribe
  • Contact Us
  • My Cart

Search

  • Advanced search
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

Login

European Respiratory Society

Advanced Search

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • Peer reviewer login
  • Alerts
  • Subscriptions

A soluble guanylate cyclase stimulator, BAY 41-8543, preserves pulmonary artery endothelial function in experimental pulmonary embolism

John Watts, Michael Gellar, Mary-Beth Fulkerson, Hugh Quach, Jeffrey Kline
European Respiratory Journal 2013 42: P490; DOI:
John Watts
1Emergency Medicine, Carolinas Medical Center, Charlotte, NC, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Gellar
1Emergency Medicine, Carolinas Medical Center, Charlotte, NC, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary-Beth Fulkerson
1Emergency Medicine, Carolinas Medical Center, Charlotte, NC, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hugh Quach
1Emergency Medicine, Carolinas Medical Center, Charlotte, NC, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey Kline
2Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Background: BAY 41-8543 reduces pulmonary vascular resistance and right ventricle injury in experimental PE. Objective: Test if BAY 41-8543 protects pulmonary artery (PA) endothelial function in PE. Methods: PE was induced (anesthetized, Sprague-Dawley rats, 25 µm polystyrene microspheres, 1.95 million/100g, IV) with BAY 41-8543 (50 ug/kg, IV) or solvent treatment. Controls had vehicle for microspheres. Rings isolated from primary PA branches (5hr. PE) were contracted (phenylephrine, 10-6M) and dilation was endothelium-dependent (acetylcholine, 10-7M – 10-5M) or with BAY 41-8543 (10-8M – 10-6M). Oxidant stress was assessed: PA tissue 4-hydroxynoneal (4-HNE) immunohistochemistry; plasma malondialdehyde (MDA). Other Control rings received red blood cell (RBC) lysate. Results: PE inhibited dilation to acetylcholine vs. Control (dose x group interaction p=0.001), while dilation to BAY 41-8543 was minimally changed. PE raised plasma hemoglobin (30-fold, p=0.003), 4-HNE stain and plasma MDA (2.2-fold, p=0.009). Treating PE rats with BAY 41-8543 reduced plasma hemoglobin, 4-HNE and MDA to levels not different from Control. Dilation to acetylcholine significantly improved in PE + BAY 41-8543 rats vs. PE (dose x group interaction p=0.04). Addition of RBC lysate to Control rings reduced dilation to acetylcholine, while BAY 41-8543 responses remained strong. Conclusion: PE caused PA endothelial dysfunction, elevated plasma hemoglobin and oxidant stress. Treating rats with BAY 41-8543 lowered plasma hemoglobin, oxidant stress and endothelial dysfunction in PE. Treating isolated rings with BAY 41-8543 bypassed endothelial dysfunction with PE or RBC lysate.

  • Embolism
  • Pharmacology
  • Animal models
  • © 2013 ERS
Previous
Back to top
Vol 42 Issue Suppl 57 Table of Contents
  • Table of Contents
  • Index by author
Email

Thank you for your interest in spreading the word on European Respiratory Society .

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A soluble guanylate cyclase stimulator, BAY 41-8543, preserves pulmonary artery endothelial function in experimental pulmonary embolism
(Your Name) has sent you a message from European Respiratory Society
(Your Name) thought you would like to see the European Respiratory Society web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A soluble guanylate cyclase stimulator, BAY 41-8543, preserves pulmonary artery endothelial function in experimental pulmonary embolism
John Watts, Michael Gellar, Mary-Beth Fulkerson, Hugh Quach, Jeffrey Kline
European Respiratory Journal Sep 2013, 42 (Suppl 57) P490;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
A soluble guanylate cyclase stimulator, BAY 41-8543, preserves pulmonary artery endothelial function in experimental pulmonary embolism
John Watts, Michael Gellar, Mary-Beth Fulkerson, Hugh Quach, Jeffrey Kline
European Respiratory Journal Sep 2013, 42 (Suppl 57) P490;
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Full Text (PDF)

Jump To

  • Article
  • Info & Metrics
  • PDF
  • Tweet Widget
  • Facebook Like
  • Google Plus One

More in this TOC Section

  • Endothelial-derived MIF contributes to pulmonary endothelial cell proliferation in human pulmonary arterial hypertension
  • Expression and function of aquaporin 1 in hypoxia-induced pulmonary hypertension
  • Tryptophan hydroxylase-1 inhibitors reduce serotonin levels and mast cell numbers in monocrotaline-treated rat lungs
Show more 4.3 Pulmonary Circulation and Pulmonary Vascular Disease

Related Articles

Navigate

  • Home
  • Current issue
  • Archive

About the ERJ

  • Journal information
  • Editorial board
  • Press
  • Permissions and reprints
  • Advertising

The European Respiratory Society

  • Society home
  • myERS
  • Privacy policy
  • Accessibility

ERS publications

  • European Respiratory Journal
  • ERJ Open Research
  • European Respiratory Review
  • Breathe
  • ERS books online
  • ERS Bookshop

Help

  • Feedback

For authors

  • Instructions for authors
  • Publication ethics and malpractice
  • Submit a manuscript

For readers

  • Alerts
  • Subjects
  • Podcasts
  • RSS

Subscriptions

  • Accessing the ERS publications

Contact us

European Respiratory Society
442 Glossop Road
Sheffield S10 2PX
United Kingdom
Tel: +44 114 2672860
Email: journals@ersnet.org

ISSN

Print ISSN:  0903-1936
Online ISSN: 1399-3003

Copyright © 2023 by the European Respiratory Society