
EDITORIAL

Alveolar epithelial type II cells from embryonic stem

cells: knights in shining armour?
H. Fehrenbach

T
oday, the pulmonary epithelium is generally accepted to
possess unique properties that go far beyond the role as a
mere physical barrier protecting an organism’s interior

against the detrimental effects exerted by airborne environmental
challenges, such as gases, particles, allergens or microorganisms.
The specific tasks respiratory epithelial cells have to fulfil differ
along the bronchiotracheal tract down to the alveoli [1, 2]. Accor-
dingly, there is a continuous change in the cellular composition of
the epithelium along the airway tract reflecting remarkable
structural and functional differentiation. Besides long-known
roles of the epithelium, such as mucociliary clearance, lung fluid
balance and surfactant homeostasis, which assure the removal of
particles and cells, the avoidance of oedema and the proper
adjustment of surface tension, respectively, are additional im-
portant functions that have been identified in recent years related
to the regulation of innate and adaptive immune responses [3–6].

In order to guarantee that these functions, which are critical for
the proper function of the lungs, can be maintained continuously,
mechanisms of epithelial repair and regeneration involving a
plethora of mediators and pathways have evolved [7]. Region-
specific epithelial ‘‘task forces’’, i.e. local progenitor cells in-
cluding alveolar epithelial type II cells (AECII), or perhaps
only a specific subset of these [8], are ‘‘defined’’ to accomplish
epithelial repair and regeneration in the different regions along
the respiratory tract [9–11]. Until a recent study reported the
identification of a distinct population of adult human lung stem
cells that were suggested to exhibit characteristics of pluripotent
stem cells [12], a report that provoked vigorous debate [11, 13, 14],
the classical stem cell hierarchy typical for other organs appeared
to be absent in the lung [15]. We can certainly expect that the near
future will provide us with exciting insights into this hot topic.

Focussing on the lung parenchyma, AECII are considered the
defenders of the alveolus because they are crucial for the
protection of the alveolar microenvironment in many ways [2].
Even if AECII fail as defenders in warding off an attack, they
appear to be capable of initiating repair processes, maintaining
or even restoring the complex alveolar architecture [16]. Con-
sequently, various experimental approaches were followed to
strengthen the protective and regenerative capacities of AECII,
for example, by introducing exogenous epithelial growth factors
implicated in regular repair processes [7], such as keratinocyte
growth factor [17] and hepatocyte growth factor [18], or
stimulating their endogenous synthesis.

In turn, this concept of the role of AECII implies that severe
damage to or loss of AECII may result in a considerable
vulnerability of the alveolus and the impairment of alveolar
repair. Consequently, direct damage to AECII and disturbance of
repair processes may be implicated in the pathogenesis of various
pulmonary disorders, such as acute lung injury [19, 20], chronic
obstructive pulmonary disease/emphysema [21, 22] and lung
fibrosis [23–25]. Particularly with regard to idiopathic pulmonary
fibrosis, convincing evidence has been gathered over recent years
to support the notion that the fibrotic response is largely driven
by abnormally activated AECII, as comprehensively reviewed
previously [26, 27]. Of course, in order to gain a full under-
standing of the role of AECII in lung fibrosis, their interactions
with extracellular matrix components and interstitial (mesench-
ymal) cells have to be taken into account [28].

In this context of AECII being lost or abnormally activated,
therapeutic approaches aiming to stimulate AECII may not only
fail (due to the missing target) but, even worse, might potentiate
the pathogenetic process. The study of SPITALIERI et al. [29]
published in this issue of the European Respiratory Journal
demonstrates a potential loophole: the in vitro differentiation of
AECII from human embryonic stem cells (HUES) for use in a cell
therapeutic approach. The authors used various methodological
approaches to broadly analyse the molecular and functional
phenotype of AECII differentiated from HUES. Therapeutic
application of such cells in humans will require considerable
expansion of HUES or the AECII derived from them in order to
obtain adequate cell numbers. On the one hand, expansion of
HUES is not a trivial task and many aspects have to be taken into
account, as described recently [30]. On the other hand, the
expansion of AECII differentiated from HUES requires that the
differentiated phenotype is maintained, which in differentiated
AECII isolated from the lung and cultured in vitro, again requires
special efforts [31]. Such technical problems may be resolved in
the future if adequately addressed. Most notably, SPITALIERI et al.
[29] tested the AECII differentiated from HUES in an in vivo
animal model of pulmonary fibrosis for their therapeutic pote-
ntial. Unlike many other animal studies in this field employing
a bleomycin model of fibrosis, which has clear limitations [32],
the authors used a silica model, which has the advantage that
there is a persistent fibrotic stimulus due to the repetitive
instillations as well as the limited clearance of the particles [33].
Moreover, cell therapy was initiated after 15 days of silica
treatment, which indicates that the setting is close to a realistic
therapeutic situation, with the disease already being established
before the intervention was initiated. Although the histopatho-
logical findings, which for a stereologist such as myself, could
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have been more rigorous, clearly indicate that the progression of
the disease was inhibited by AECII differentiated from HUES, in
contrast to a control therapy using human fibroblasts, a
therapeutic effect in the sense of achieving a near-normal lung
architecture remains to be demonstrated. Furthermore, the
authors have shown nicely that various cytokines (in particular,
transforming growth factor-b, the major player in the pathogenetic
process) and collagen 1 gene expression were significantly
inhibited by their therapeutic approach. Data on the effects on
the respective protein levels, however, would have further
improved the impact of this study. Additional experiments are
warranted in the future to reveal the precise mechanisms of this
therapeutic approach. Specifically, knowledge of the potential
interactions of AECII introduced into the lung with resident
mesenchymal cells will probably enhance our understanding of
the relevance of this experimental therapeutic approach. In
particular, it might be interesting to learn if and how AECII
differentiated from HUES and introduced into a fibrotic lung
escape from being abnormally activated like the resident AECII.
Hence, the study of SPITALIERI et al. [29] has opened a new avenue
along which AECII differentiated from HUES may come along as
a knight in shining armour to help us to combat a still life-
threatening and poorly manageable lung disease. Combining this
approach with genetic manipulation may even help to further
strengthen the AECII’s armour [34]. However, history and myths
tell us that seemingly invincible knights bear armour that, in most
cases, revealed a specific point of weakness, and it is the task of
science to identify such points of weakness in future studies in
order to improve our therapeutic armamentarium against life-
threatening diseases, such as pulmonary fibrosis.
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