Skip to main content

Main menu

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • COVID-19 submission information
    • Peer reviewer login
  • Alerts
  • Subscriptions
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

User menu

  • Log in
  • Subscribe
  • Contact Us
  • My Cart

Search

  • Advanced search
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

Login

European Respiratory Society

Advanced Search

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • COVID-19 submission information
    • Peer reviewer login
  • Alerts
  • Subscriptions

Strategies of muscle training in very severe COPD patients

I. Vogiatzis
European Respiratory Journal 2011 38: 971-975; DOI: 10.1183/09031936.00075011
I. Vogiatzis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gianvog@phed.uoa.gr
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

There is strong evidence that exercise training, constituting the cornerstone of pulmonary rehabilitation, improves exercise tolerance, dyspnoea sensations, functional capacity and quality of life in patients with severe chronic obstructive pulmonary disease. However, intolerable sensations of breathlessness and/or peripheral muscle discomfort may prevent such patients from tolerating high-intensity exercise levels for sufficiently long periods of time to obtain true physiological training effects.

Accordingly, the major issue that arises is the selection of the appropriate training strategy, which is tailored to the cardiovascular, pulmonary and peripheral muscle limitations of the individual patient and is aimed at maximising the effect of exercise conditioning.

Within this context, the present article explores the application of strategies that optimise exercise tolerance by reducing dyspnoea sensations, namely noninvasive mechanical ventilation, oxygen and/or heliox supplementation. Administration of heliox or oxygen during exercise also increases peripheral muscle oxygen delivery, thereby delaying the onset of peripheral muscle fatigue. Particular emphasis is also given to interval exercise and resistance-muscle training as both modalities allow the application of intense loads on peripheral muscles with tolerable levels of dyspnoea sensations.

In patients with profound muscle weakness and intense breathlessness upon physical exertion, execution of short bouts of interval or local muscle strength conditioning, along with oxygen breathing, may constitute a feasible and effective approach to pulmonary rehabilitation.

  • Chronic obstructive pulmonary disease
  • dyspnoea
  • exercise capacity
  • interval exercise
  • peripheral muscle weakness

Breathlessness and peripheral muscle discomfort are the most common symptoms limiting exercise tolerance in patients with severe chronic obstructive pulmonary disease (COPD). Exercise training constitutes the cornerstone of pulmonary rehabilitation as there is strong evidence that its implementation improves both exercise tolerance and health-related quality of life in these patients [1]. The intensity of exercise is a key determinant of true physiological training effects: in order to optimise this outcome, it is necessary that the intensity of exercise be as high as possible [2]. Nevertheless, in patients with severe COPD, intolerable sensations of breathlessness and/or peripheral muscle discomfort may prevent high-intensity levels being tolerated for sufficiently long periods of time to yield true physiological training effects [3]. Consequently, it is important to implement strategies to optimise exercise tolerance in severe COPD with the objective of enhancing the patient's ability to tolerate as sustained and intense a workload as possible. These strategies aim at reducing the intensity of dyspnoea sensations, either by allowing patients to sustain a higher absolute exercise-training intensity or by prolonging the cumulative time a given exercise task can ordinarily be sustained. Such strategies include noninvasive mechanical ventilation (NIV), oxygen and/or heliox supplementation and interval cycling modality. In addition, progressive resistance muscle training will be discussed within the scope of reducing leg muscle discomfort.

NONINVASIVE MECHANICAL VENTILATION

Noninvasive positive-pressure mechanical ventilation has been shown to reduce the load on the respiratory muscles and the intensity of dyspnoea, thereby increasing exercise intensity and endurance capacity [4, 5]. In particular, in patients with severe COPD, application of proportional assist ventilation (PAV) has been shown to allow a greater intensity of exercise to be sustained for longer periods of time than sham exercise, thus potentially yielding significant training physiological effects [6]. PAV is a mode of partial ventilatory assistance with characteristics of proportionality and adaptability to the intensity and timing of spontaneous ventilatory pattern by providing inspiratory flow and pressure in proportion to the patient's effort [4]. To the extent that intrinsic mechanical loading and functional inspiratory muscle weakness in severe COPD contribute to intense dyspnoea sensations, PAV provides a symptomatic benefit by unloading and assisting such overburdened ventilatory muscles, thereby reducing the work of breathing and thus dyspnoea sensations [7].

In addition, continuous positive airway pressure (CPAP) has been reported to reduce the inspiratory threshold load on the inspiratory muscles of dynamically hyperinflated COPD patients and also to enhance neuromuscular coupling, thus improving dyspnoea sensations and exercise tolerance [8]. The commonly accepted explanation of the effects of CPAP is that it counterbalances intrinsic positive end-expiratory pressure, i.e. the inspiratory threshold load [8]. In two studies conducted by O'Donnell and co-workers [5, 8] in patients with severe COPD, application of CPAP of 4–5 cmH2O during steady-state sub-maximal exercise resulted in a significant increase in exercise endurance time and a highly significant reduction in the sense of breathing effort.

Moreover, pressure-support ventilation (PSV), a pressure-targeted mode in which each breath is patient triggered and supported, can effectively assist ventilation when applied noninvasively to patients with acute and chronic respiratory failure [4]. Application of PSV has been shown to yield consistent improvements in endurance capacity as assessed by walking distance [9] and by reductions in the intensity of dyspnoea during constant-load cycling [10].

Dolmage and Goldstein [11] investigated which of the two methods, PAV, CPAP or a combination of the two, was more effective in enabling very severe COPD patients to increase exercise tolerance when applied during constant-load exercise at 60–70% of maximum power. Although exercise tolerance with PAV (7.1 min) or CPAP (8.2 min) alone was not significantly prolonged compared to sham exercise (6.6 min), a combination of the methods significantly increased exercise tolerance (12.9 min). Bianchi et al. [12] investigated the impact of PAV, CPAP or PSV on exercise tolerance and breathlessness in severe stable chronically hypercapnic COPD patients during constant-load cycling at 80% of maximal capacity. In comparison with sham ventilation, PAV, PSV and CPAP were able to increase endurance time (from 7.2 to 12.0, 10.0 and 9.6 min, respectively) and reduce dyspnoea sensations. However, the greatest improvement was observed with PAV.

A recent study [13], which intended to provide more insight into the pathophysiological mechanisms of improvement in exercise tolerance by using NIV in COPD, implemented respiratory muscle unloading via PAV during high-intensity exercise (70–80% of peak) and demonstrated improved peripheral muscle oxygenation assessed by near-infrared spectroscopy despite unaltered systemic oxygen delivery in patients with advanced COPD. These findings are indicative that a fraction of the available cardiac output might be redirected from ventilatory to locomotor muscles due to respiratory muscle unloading, thereby enhancing peripheral muscle oxygen delivery and thus exercise tolerance.

OXYGEN/HELIOX SUPPLEMENTATION

Supplemental oxygen has the potential to increase the exercise tolerance of hypoxaemic COPD patients by means of an increase in arterial oxygen content and vasodilation of the pulmonary circulation [14]. These two mechanisms increase oxygen delivery to the exercising muscles and may potentially reduce carotid body stimulation at heavy levels of exercise with or without lactic acidosis [15]. Ambulatory oxygen therapy has widely been shown to increase exercise performance and to relieve exercise breathlessness in severe COPD patients [16, 17]. Studies indicate that a reduction in the rate of exercise-induced dynamic hyperinflation plays an important role in the oxygen-related relief of dyspnoea [16, 17]. In addition, improvement in exercise performance via oxygen supplementation was primarily related to the reduced ventilatory demand, which, in turn, led to improved operational lung volumes and delayed attainment of limiting ventilatory constraints on exercise and the onset of intolerable dyspnoea. Interestingly, supplemental oxygen generally increases exercise tolerance not only in hypoxaemic but also in non-hypoxaemic patients [16]. In fact, modest changes in sub-maximal ventilation and dynamic ventilatory mechanics have been documented to result in relatively large improvements in symptom intensity and exercise capacity [16]. Besides improving in respiratory function, oxygen supplementation has been documented to increase leg muscle oxygen delivery and oxygen uptake, thereby justifying the ability of the peripheral muscle to perform more work [18].

In patients with severe COPD, supplementation with normoxic heliox decreases turbulence within medium to large airways, increases expiratory flow rate and reduces the work of breathing, as well as the degree of exercise-induced dynamic hyperinflation and the intensity of dyspnoea, thereby enhancing exercise tolerance. However, there is emerging evidence [19] indicating that enhanced exercise tolerance with heliox is also due to an increase in locomotor muscle oxygen delivery during constant-work rate sub-maximal exercise. Enhanced oxygen delivery to peripheral muscles following administration of heliox during exercise in severe COPD may occur via a number of mechanisms, namely: 1) improved cardiac output secondary to reduced intra-thoracic pressures and/or pleural pressure swings; 2) improved arterial oxygen content; and 3) blood flow redistribution from respiratory to peripheral muscles secondary to reduction in the mechanical load of the respiratory muscles [19]. A recent study in patients with severe COPD [20] confirmed that heliox administration during constant-load exercise (at 75% of peak capacity) reduces total respiratory muscle power by unloading both inspiratory and expiratory muscles, as well as improving central haemodynamic responses (increase in stroke volume) and arterial oxygen content. These findings [20] confirmed those of a previous study showing faster cardio-dynamic responses following heliox administration [19] but disputed suggestions that the increase in locomotor muscle oxygen delivery, as inferred by deoxyhaemoglobin kinetics determined by near-infrared spectroscopy (an index of tissue oxygen extraction), was indicative of blood flow redistribution from the respiratory to locomotor muscles as heliox administration during exercise improved blood flow and oxygen delivery to both respiratory and locomotor muscles. In addition, reductions in the degree of exercise-induced dynamic hyperinflation with heliox administration have been shown to be associated with improvements in several indices of cardio-circulatory function [21].

INTERVAL EXERCISE

Intensity and duration of exercise are important determinants of the physiological adaptations that occur in response to training. In patients with COPD, there are indications that greater physiological benefits can be obtained through high-intensity compared with moderate-intensity exercise training [2]. However, high-intensity exercise training may not be appropriate for those COPD patients who are unable to sustain such intensities for long periods of time due to symptom limitation. In fact, patients with severe COPD are so limited by dyspnoea and/or locomotor muscle weakness that their ability to exercise is restricted to very low-intensity levels [3].

In addition, premature occurrence of lactic acidosis consequent to reduced peripheral muscle oxygen delivery and muscle fibre dysfunction puts particular stress on the ventilatory system in COPD. Thus, the small increase in arterial lactate concentration observed during interval exercise compared with continuous exercise [22–24] appears to be beneficial to COPD patients by reducing some of the acid stimulus to breathe [2], thereby allowing ventilation and dyspnoea sensations to be tolerated for a prolonged period of time. Vogiatzis et al. [23] have shown that using interval exercise, patients with severe COPD can almost triple the total exercise duration with significantly lower and more stable metabolic and ventilatory responses compared with continuous exercise. Although patients exercised for longer time (∼30 min) at a higher intensity (100% of peak exercise capacity) with the interval mode, they had lower metabolic demands and less ventilatory restrictions at the end of symptom-limited exercise (fig. 1) [23].

Figure 1–
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1–

a) Oxygen uptake (V′o2) and minute ventilation (V′E) in a patient with severe chronic obstructive pulmonary disease (forced expiratory volume in 1 s 0.85 L) during interval (○) and constant-load (•) exercise protocols. Interval exercise was sustained for 30 s at 100% of peak baseline capacity alternated with 30 s rest, whereas constant-load exercise was sustained at 75% of peak baseline capacity. – – – – – represents a) peak V′o2 or b) maximal voluntary ventlation. Modified from [23].

Conversely, when exercising continuously without any rest periods, severe COPD patients can tolerate high work rates (50–80% of their maximum exercise capacity) for only 5–12 min, at the end of which they are completely exhausted [24]. At intensities of 65–85% of peak exercise capacity, COPD patients can sustain only 4–5 min of exercise [24] and only up to 13 min for lower intensities (50–60% of peak exercise capacity) [24]. As such, implementing continuous exercise training for patients with severe COPD will be ineffective as they will have to interrupt exercise in order to rest for several minutes before they start exercising again. In contrast, interval training can enable patients to complete short periods of high-intensity exercise that would not be possible with a continuous exercise mode. When patients exercise for short periods of time (e.g. 30 s) alternated with short rest intervals of 30 s, they complete the total work with moderate exertion and relatively stable metabolic and ventilatory response (fig. 1) [22, 23]. Indeed, patients with severe COPD can endure high-intensity interval training in a rehabilitation setting for long periods of time with lower symptoms of dyspnoea and leg discomfort compared with the conventionally implemented continuous training [25–27]. A recent study demonstrated that interval exercise training allows severe COPD patients (Global Initiative of Chronic Obstructive Lung Disease stage IV) to exercise at a sufficiently high intensity to obtain true physiological training effects manifested by improvements in muscle fibre size, typology and capillarisation [28].

PROGRESSIVE RESISTANCE MUSCLE TRAINING

Patients with severe COPD are often exposed to the risk of profound peripheral muscle de-conditioning as a result of disease severity and progression. Intense leg discomfort sensations often deter COPD patients from participating in daily activities that require body mobility and strength. Since skeletal muscle weakness has a negative impact on exercise tolerance in the majority of patients with severe COPD, an intervention of resistance exercise during pulmonary rehabilitation is deemed essential [1]. Accordingly, rehabilitation experts often prescribe resistance muscle training programmes, as clinical outcomes are definitely promising for the severe COPD patient [29].

In a recent systematic review of 18 controlled trials, mainly including patients with severe COPD, significant effects for increases in muscle strength after short-term progressive resistance exercise were demonstrated [30]. The key features of progressive resistance exercise protocols used in these trials included an average of 12 weeks of training, with training sessions taking place two to three times per week. A median of five resistance exercises for the muscles of the arm, leg and trunk were performed during each exercise session. The majority of the training sessions comprised two to four sets of eight to 12 repetitions for each exercising muscle group, at intensities progressing from ∼30% to ∼90% of one-repetition maximum.

In a study evaluating the effectiveness of progressive resistance exercise in nine trials [30], the adaptations made after concluding the training programme were important for increasing arm and leg muscle strength in severe COPD patients. More specifically, a meta-analysis was conducted and showed an increase of 25% in maximum knee extensor muscle strength after progressive exercise training compared to no intervention or aerobic training that showed an increase of only 10% in the knee extensor muscle strength. However, progressive resistance exercise did not show significant improvements in maximal exercise capacity or respiratory function [30]. Body composition was examined in two trials and showed an increase in total lean mass and a reduction in total fat percentage after 12 weeks of progressive resistance exercise [31, 32].

Accordingly, short-term progressive resistance muscle training can be beneficial for severe COPD patients in terms of enhancing muscle strength and increasing the performance of some daily activities. Progressive resistance exercise can increase arm and leg muscle strength and improve the performance of tasks, such as stair climbing and rising from sitting [30]. However, the effects of progressive resistance exercise on measures of body composition, psychological function and societal participation still remain inconclusive.

CONCLUSION

Exercise training should be tailored to address the individual patient's limiting factors (central cardiorespiratory and/or peripheral muscle) to exercise. In patients with intense dyspnoea symptoms, interval exercise is more appropriate than continuous exercise. Resistance exercise should be complementary to interval exercise so as to improve the strength of both the upper and the lower body muscles. In patients with profound muscle weakness, interval and resistance exercise should constitute a training priority. Future research is required and it should scrutinise the longer term outcomes and optimal methods for maintaining rehabilitation-induced physiological adaptations in patients with severe COPD.

Footnotes

  • Previous articles in this Series: No. 1: Burtin C, Decramer M, Gosselink R, et al. Rehabilitation and acute exacerbations. Eur Respir J 2011; 38: 702–712.

  • Statement of Interest

    None declared.

  • Received May 3, 2011.
  • Accepted May 5, 2011.
  • ©ERS 2011

References

  1. ↵
    1. Nici L,
    2. Donner C,
    3. Wouters E,
    4. et al
    . American Thoracic Society/European Respiratory Society statement on pulmonary rehabilitation. Am J Respir Crit Care Med 2006; 173: 1390–1413.
    OpenUrlCrossRefPubMedWeb of Science
  2. ↵
    1. Casaburi R,
    2. Patessio A,
    3. Ioli F,
    4. et al
    . Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis 1991; 143: 9–18.
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    1. Maltais F,
    2. LeBlanc P,
    3. Jobin J,
    4. et al
    . Intensity of training and physiologic adaptation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1997; 155: 555–561.
    OpenUrlPubMedWeb of Science
  4. ↵
    1. Ambrosino N,
    2. Strambi S
    . New strategies to improve exercise tolerance in chronic obstructive pulmonary disease. Eur Respir J 2004; 24: 313–322.
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. O'Donnell DE,
    2. Sanii R,
    3. Giesbrecht G,
    4. et al
    . Effect of continuous positive airway pressure on respiratory sensation in patients with chronic obstructive pulmonary disease during submaximal exercise. Am Rev Respir Dis 1988; 138: 1185–1191.
    OpenUrlPubMedWeb of Science
  6. ↵
    1. Hawkins P,
    2. Johnson LC,
    3. Nikoletou D,
    4. et al
    . Proportional assist ventilation as an aid to exercise training in severe chronic obstructive pulmonary disease. Thorax 2002; 57: 853–859.
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Hernandez P,
    2. Maltais F,
    3. Gursahaney A,
    4. et al
    . Proportional assist ventilation may improve exercise performance in severe chronic obstructive pulmonary disease. J Cardiopulm Rehabil 2001; 21: 135–142.
    OpenUrlCrossRefPubMed
  8. ↵
    1. O'Donnell DE
    . Exertional breathlessness in chronic respiratory disease. In: Mahler DA, ed. Dyspnoea. Lung Biology in Health and Disease. Vol. 111. New York, Informa Healthcare, 1998; pp. 99–147.
  9. ↵
    1. Kyroussis D,
    2. Polkey MI,
    3. Hamnegard CH,
    4. et al
    . Respiratory muscle activity in patients with COPD walking to exhaustion with and without pressure support. Eur Respir J 2000; 15: 649–655.
    OpenUrlAbstract
  10. ↵
    1. Maltais F,
    2. Reissmann H,
    3. Gottfried SB
    . Pressure support reduces inspiratory effort and dyspnoea during exercise in chronic airflow obstruction. Am J Respir Crit Care Med 1995; 151: 1027–1033.
    OpenUrlPubMedWeb of Science
  11. ↵
    1. Dolmage TE,
    2. Goldstein RS
    . Proportional assist ventilation and exercise tolerance in subjects with COPD. Chest 1997; 111: 948–954.
    OpenUrlCrossRefPubMedWeb of Science
  12. ↵
    1. Bianchi L,
    2. Foglio K,
    3. Pagani M,
    4. et al
    . Effects of proportional assist ventilation on exercise tolerance in COPD patients with chronic hypercapnia. Eur Respir J 1998; 11: 422–427.
    OpenUrlAbstract
  13. ↵
    1. Borghi-Silva A,
    2. Oliveira CC,
    3. Carrascosa C,
    4. et al
    . Respiratory muscle unloading improves leg muscle oxygenation during exercise in patients with COPD. Thorax 2008; 63: 910–915.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Amann M,
    2. Regan MS,
    3. Kobitary M,
    4. et al
    . Impact of pulmonary system limitations on locomotor muscle fatigue in patients with COPD. Am J Physiol Regul Integr Comp Physiol 2010; 299: R314–R324.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Somfay A,
    2. Porszasz J,
    3. Lee SM,
    4. et al
    . Effect of hyperoxia on gas exchange and lactate kinetics following exercise onset in nonhypoxemic COPD patients. Chest 2002; 121: 393–400.
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    1. Somfay A,
    2. Porszasz J,
    3. Lee SM,
    4. et al
    . Dose–response effect of oxygen on hyperinflation and exercise endurance in nonhypoxaemic COPD patients. Eur Respir J 2001; 18: 77–84.
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. O'Donnell DE,
    2. Bain DJ,
    3. Webb KA
    . Factors contributing to relief of exertional breathlessness during hyperoxia in chronic airflow limitation. Am J Respir Crit Care Med 1997; 155: 530–535.
    OpenUrlPubMedWeb of Science
  18. ↵
    1. Maltais F,
    2. Simon M,
    3. Jobin J,
    4. et al
    . Effects of oxygen on lower limb blood flow and O2 uptake during exercise in COPD. Med Sci Sports Exerc 2001; 33: 916–922.
    OpenUrlCrossRefPubMedWeb of Science
  19. ↵
    1. Chiappa GR,
    2. Queiroga F Jr.,
    3. Meda E,
    4. et al
    . Heliox improves oxygen delivery and utilization during dynamic exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2009; 179: 1004–1010.
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    1. Vogiatzis I,
    2. Habazettl H,
    3. Aliverti A,
    4. et al
    . Effect of helium breathing on intercostal and quadriceps muscle blood flow during exercise in COPD patients. Am J Physiol Regul Integr Comp Physiol 2011; 300: 1549–1559.
    OpenUrlCrossRef
  21. ↵
    1. Laveneziana P,
    2. Valli G,
    3. Onorati P,
    4. et al
    . Effect of heliox on heart rate kinetics and dynamic hyperinflation during high-intensity exercise in COPD. Eur J Appl Physiol 2011; 111: 225–234.
    OpenUrlCrossRefPubMed
  22. ↵
    1. Sabapathy S,
    2. Kingsley RA,
    3. Schneider DA,
    4. et al
    . Continuous and intermittent exercise responses in individuals with chronic obstructive pulmonary disease. Thorax 2004; 59: 1026–1031.
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Vogiatzis I,
    2. Nanas S,
    3. Kastanakis E,
    4. et al
    . Dynamic hyperinflation and tolerance to interval exercise in patients with advanced COPD. Eur Respir J 2004; 24: 385–390.
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Kortianou EA,
    2. Nasis IG,
    3. Spetsioti ST,
    4. et al
    . Effectiveness of interval exercise training in patients with COPD. Cardiopulm Phys Ther J 2010; 21: 12–19.
    OpenUrlPubMed
  25. ↵
    1. Vogiatzis I,
    2. Nanas S,
    3. Roussos C
    . Interval training as an alternative modality to continuous exercise in patients with COPD. Eur Respir J 2002; 20: 12–19.
    OpenUrlAbstract/FREE Full Text
    1. Coppoolse R,
    2. Schols AM,
    3. Baarends EM,
    4. et al
    . Interval versus continuous training in patients with severe COPD: a randomised clinical trial. Eur Respir J 1999; 14: 258–263.
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Vogiatzis I,
    2. Terzis G,
    3. Nanas S,
    4. et al
    . Skeletal muscle adaptations to interval training in patients with advanced COPD. Chest 2005; 128: 3838–3845.
    OpenUrlCrossRefPubMed
  27. ↵
    1. Vogiatzis I,
    2. Terzis G,
    3. Stratakos G,
    4. et al
    . Effect of pulmonary rehabilitation on peripheral muscle fiber remodelling in COPD patients with GOLD stages II to IV. Chest 2011; [Epub ahead of print. DOI: 10.1378/chest.10-3058].
  28. ↵
    1. Gosselink R,
    2. Troosters T,
    3. Decramer M
    . Exercise training in COPD patients: the basic questions. Eur Respir J 1997; 10: 2884–2891.
    OpenUrlAbstract
  29. ↵
    1. O'Shea SD,
    2. Taylor NF,
    3. Paratz JD
    . Progressive resistance exercise improves muscle strength and may improve elements of performance of daily activities for people with COPD: a systematic review. Chest 2009; 136: 1269–1283.
    OpenUrlCrossRefPubMedWeb of Science
  30. ↵
    1. Casaburi R,
    2. Bhasin S,
    3. Cosentino L,
    4. et al
    . Effects of testosterone and resistance training in males with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004; 170: 870–878.
    OpenUrlCrossRefPubMedWeb of Science
  31. ↵
    1. Panton LB,
    2. Golden J,
    3. Broeder CE,
    4. et al
    . The effects of resistance training on functional outcomes in patients with chronic obstructive pulmonary disease. Eur J Appl Physiol 2004; 91: 443–449.
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top
View this article with LENS
Vol 38 Issue 4 Table of Contents
European Respiratory Journal: 38 (4)
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for your interest in spreading the word on European Respiratory Society .

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Strategies of muscle training in very severe COPD patients
(Your Name) has sent you a message from European Respiratory Society
(Your Name) thought you would like to see the European Respiratory Society web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
Citation Tools
Strategies of muscle training in very severe COPD patients
I. Vogiatzis
European Respiratory Journal Oct 2011, 38 (4) 971-975; DOI: 10.1183/09031936.00075011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Strategies of muscle training in very severe COPD patients
I. Vogiatzis
European Respiratory Journal Oct 2011, 38 (4) 971-975; DOI: 10.1183/09031936.00075011
Reddit logo Technorati logo Twitter logo Connotea logo Facebook logo Mendeley logo
Full Text (PDF)

Jump To

  • Article
    • Abstract
    • NONINVASIVE MECHANICAL VENTILATION
    • OXYGEN/HELIOX SUPPLEMENTATION
    • INTERVAL EXERCISE
    • PROGRESSIVE RESISTANCE MUSCLE TRAINING
    • CONCLUSION
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Subjects

  • COPD and smoking
  • Tweet Widget
  • Facebook Like
  • Google Plus One

More in this TOC Section

  • Asthma remission: what is it and how can it be achieved?
  • Asthma management in low and middle income countries
  • Calcilytics for the management of asthma
Show more Series

Related Articles

Navigate

  • Home
  • Current issue
  • Archive

About the ERJ

  • Journal information
  • Editorial board
  • Press
  • Permissions and reprints
  • Advertising

The European Respiratory Society

  • Society home
  • myERS
  • Privacy policy
  • Accessibility

ERS publications

  • European Respiratory Journal
  • ERJ Open Research
  • European Respiratory Review
  • Breathe
  • ERS books online
  • ERS Bookshop

Help

  • Feedback

For authors

  • Instructions for authors
  • Publication ethics and malpractice
  • Submit a manuscript

For readers

  • Alerts
  • Subjects
  • Podcasts
  • RSS

Subscriptions

  • Accessing the ERS publications

Contact us

European Respiratory Society
442 Glossop Road
Sheffield S10 2PX
United Kingdom
Tel: +44 114 2672860
Email: journals@ersnet.org

ISSN

Print ISSN:  0903-1936
Online ISSN: 1399-3003

Copyright © 2023 by the European Respiratory Society