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Airway hyperresponsiveness in asthma:

lessons from in vitro model systems and

animal models
H. Meurs, R. Gosens and J. Zaagsma

ABSTRACT: Airway hyperresponsiveness (AHR) is a hallmark clinical symptom of asthma. At

least two components of AHR have been identified: 1) baseline AHR, which is persistent and

presumably caused by airway remodelling due to chronic recurrent airway inflammation; and 2)

acute and variable AHR, which is associated with an episodic increase in airway inflammation due

to environmental factors such as allergen exposure.

Despite intensive research, the mechanisms underlying acute and chronic AHR are poorly

understood. Owing to the complex variety of interactive processes that may be involved, in vitro

model systems and animal models are indispensable to the unravelling of these mechanisms at

the cellular and molecular level.

The present paper focuses on a number of translational studies addressing the emerging

central role of the airway smooth muscle cell, as a multicompetent cell involved in acute airway

constriction as well as structural changes in the airways, in the pathophysiology of airway

hyperresponsiveness.

KEYWORDS: Airway hyperresponsiveness, airway inflammation, airway pharmacology, airway

remodelling, airway smooth muscle, animal models of asthma

A
llergic asthma is a chronic inflammatory
disease of the airways. Characteristic fea-
tures of this disease are allergen-induced

early and late bronchial obstructive reactions,
airway inflammation, structural changes to the
airway wall associated with progressive decline in
lung function, and airway hyperresponsiveness
(AHR) [1]. AHR is defined by an exaggerated
obstructive response of the airways to a variety of
pharmacological, chemical and physical stimuli,
including histamine, methacholine, AMP, sulphur
dioxide, fog and cold air [2, 3]. AHR is a risk factor
for the development of asthmatic symptoms in
children and adults, is associated with the severity
of respiratory symptoms and decline in lung
function, and determines the need for therapy [3].

Despite intensive research, the mechanisms of AHR
are only partially understood. The complex variety
of interactive processes that appear to be involved

in the pathophysiology of AHR urges detailed
in-depth investigations aimed at unravelling the
underlying mechanisms at the cellular and mole-
cular level in relation to their functional significance
and hence at identifying potential targets for drug
therapy. Since there are obvious ethical and
experimental limitations, these mechanisms cannot
be simply investigated in human subjects; therefore,
in vitro model systems and animal models are
indispensable. The present review focuses on a
number of translational paradigms using these
model systems, particularly addressing the role of
the airway smooth muscle cell, not only as the key
determinant of airway narrowing in asthma but
also as an emerging effector of airway inflammation
and remodelling [4–11].

VARIABLE AND CHRONIC AHR
It has been recognised that there are at least two
components of AHR, the mechanisms of which
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may be different [12]. The first component is baseline and
relatively persistent AHR, which is present in the majority of
patients with chronic asthma. Superimposed on this, there is a
component of variable AHR, which can be induced by episodic
exposure to environmental factors, such as allergens or
respiratory tract infections [13, 14]. The variable component
of AHR presumably reflects current airway inflammation
associated with asthma activity and severity [15, 16], whereas
the underlying chronic component of AHR probably relates to
structural alterations in the airways collectively called airway
remodelling [12].

Airway remodelling is characterised by persistent structural
changes to the airway wall, including epithelial denudation,
goblet cell metaplasia, subepithelial fibrosis, increased airway
smooth muscle mass, angiogenesis and alterations to extra-
cellular matrix components [17–19]. It is generally believed
that both airway remodelling and chronic AHR may be
induced by chronic or prolonged airway inflammation [12].
However, the causal relationship between these factors in
patients with asthma has recently been challenged. Thus
indices of airway remodelling may already be evident in
childhood asthma, with no obvious relationships to asthma
symptoms and airway inflammation [20–23]. This has led to
the concept that inflammation and airway remodelling may
occur as parallel rather than sequential events. This concept
might fit with the hypothesis that an intrinsic inability of
appropriate repair of epithelial injury in response to environ-
mental agents in genetically susceptible individuals activates
the epithelial–mesenchymal trophic unit, leading to the
secretion of a variety of growth factors, mediators and
cytokines by the activated airway epithelium, which drives
the airway remodelling and promotes persistent airway
inflammation [24]. In addition, the causal relationship between
AHR and airway remodelling is uncertain [25]. Thus, although
increased airway smooth muscle mass and function as well as
structural changes to the airways may well explain an increase
in airway responsiveness [4, 6, 26–29], airway remodelling
could also be protective in limiting excessive airway narrowing
by means of increased stiffening of the airways [28, 30, 31].

The relationship between variable AHR and inflammation of the
airways seems rather well established. For allergic asthma, this
is indicated by numerous studies demonstrating a direct
association between allergen-induced acute changes in airway
responsiveness and type-2 T-helper cell (Th)-driven eosinophi-
lic airway inflammation, as well as its sensitivity to anti-
inflammatory therapy [12]. Nevertheless, there is some evidence
that acute AHR and eosinophilic airway inflammation may
dissociate. Thus treatment with anti-interleukin (IL)-5 and anti-
immunoglobulin (Ig) E did not affect allergen-induced AHR
despite reduced blood and airway eosinophil numbers [32].
However, the results of this study should be interpreted with
caution [33]. Changes in airway geometry caused by both
mucosal and adventitial swelling of the airways due to oedema
could theoretically play a role in allergen-induced AHR,
amplifying the degree of luminal narrowing for a given degree
of airway smooth muscle shortening and mechanically uncou-
pling the airway smooth muscle from the parenchyma,
respectively [34, 35]. However, even though mucosal thickening
has smaller effects on airway resistance than on airway
responsiveness [35], allergen-induced AHR persists after airway

calibre has fully returned to baseline [36]. Moreover, AHR
develops after challenge with low subclinical doses of allergen
without significant change in pulmonary function [37, 38].
Therefore, inflammation-induced alterations in the control of
airway smooth muscle function are likely to be of major
importance. These changes could involve changes in the
neurohumoral control of airway smooth muscle tone as well
as changes in the airway smooth muscle cell itself, altering its
responsiveness to external stimuli [39–43]. However, clinical
evidence for such mechanisms is scarce and this area obviously
requires further exploration.

IN VITRO MODEL SYSTEMS AND ANIMAL MODELS
In vitro model systems utilising human or animal (particularly
bovine and guinea pig) primary airway smooth muscle cells
and airway smooth muscle tissue preparations are widely used
in studies on AHR, and have been particularly useful in
unravelling molecular mechanisms of contractile, proliferative
and synthetic cell function, as well as their pharmacological
modulation [6, 8, 40, 42, 44–48]. Airway smooth muscle tissue
from asthmatic subjects permitting contraction studies or cell
culture is scarce, and the limited number of studies performed
thus far have delivered inconsistent results regarding the
responsiveness of these preparations to contractile and
relaxant agonists [42, 49, 50]. Interestingly, cultures of airway
smooth muscle cells from endobronchial biopsy specimens
from asthmatic patients have been described recently, demon-
strating intrinsic differences between asthmatic and nonasth-
matic cells, with increased proliferative and synthetic
capacities of the asthmatic cells [50–53].

Small animal models of asthma, using mice, rats and guinea
pigs, have proven to be extremely useful for the investigation
of potential mechanisms of airway pathophysiology in the
intact organism in vivo, as well as in isolated organs and cells ex
vivo [54–58]. Likewise, animal models have been indispensable
for the identification of a vast number of potential drug targets,
as well as for efficacy and safety testing of new drugs.
Nevertheless, there are appreciable interspecific differences in
airway physiology and pathophysiology between the various
animal models of asthma, as well as between animal models
and human asthmatics, that should be taken into account when
studying particular phenotypes of the disease.

Currently, the most widely used experimental animal for
modelling allergic responses in the airways is the mouse,
particularly because of the availability of trangenic and gene-
targeted animals, as well as the variety of commercially
available mouse-specific immunological tools for phenotypic
and functional analysis of cells and mediators. Mouse models
of allergic asthma have proved to be very useful in the
investigation of mechanisms of allergic inflammation and the
underlying immunological response that are believed to be
important in a variety of processes in allergic asthma,
including development of AHR [55, 58]. Mice are easily
sensitised to a number of antigens, including ovalbumin and
human allergens, such as house dust mite and Aspergillus
fumigatus. Intraperitoneal sensitisation and subsequent inhala-
tional challenge with these antigens results in a clearly defined
Th2 response in the airways, characterised by the development
of antigen-specific IgE, eosinophilia and AHR, which may,
however, vary considerably between strains [58]. Similarly,
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repeated antigen challenge induces airway remodelling in this
species, which, depending on strain and/or sensitisation and
challenge protocols, may or may not be associated with chronic
AHR [59–62]. In this regard, the house dust mite model
developed by JOHNSON et al. [59] is of particular interest. In
contrast to ovalbumin models, this model permitted sensitisa-
tion via the natural route without the development of
immunological tolerance, whereas airway remodelling and
AHR induced by repeated allergen challenge persisted after
cessation of allergen exposure and resolution of airway
inflammation.

However, murine models appear to be less well suited to the
investigation of the mechanisms of acute hyperresponsiveness
in relation to early and late asthmatic responses. Thus AHR
and early asthmatic reactions are usually observed only after
repeated allergen challenge, and a late asthmatic reaction is
rarely observed [58, 63]. Difficulties in measuring these
physiological responses could be related to the anatomical
structure of the mouse lung, which is characterised by
relatively large airways and a paucity of airway smooth
muscle and mucous glands in the airways [58, 64]. In addition,
because of its small size, lung function measurement is a
significant challenge in the mouse, a situation which has
widely favoured the use of noninvasive barometric plethys-
mography in conscious mice for the measurement of
enhanced pause (Penh) [65]. Penh is an empirical variable
derived from respiratory variations in box pressure with no
direct linkage to established mechanical parameters, which
has recently been seriously questioned as a valid measure of
lung function [66, 67]. Another drawback of measuring
physiological as well as pharmacological responses in mice
is the unresponsiveness of airway smooth muscle to various
bronchoconstrictors implicated in the pathophysiology of
asthma, including histamine, cysteinyl leukotrienes, neuroki-
nins, bradykinin and prostanoids [54]. Moreover, as in rats,
the primary mediator of allergen-induced bronchoconstriction
is serotonin, not histamine, and inhibitory nonadrenergic–
noncholinergic (iNANC) nerves are absent in these species
[54]. However, in contrast to mice, rat models of allergic
asthma, particularly of the Brown Norway strain, develop,
usually modest, IgE-mediated early and late asthmatic
reactions upon allergen challenge, which are associated with
Th2-directed eosinophilic airway inflammation and hyperre-
sponsiveness that is usually measured 18–24 h after challenge.
Moreover, repeated allergen challenge causes airway remo-
delling, including airway smooth muscle hyperplasia and
subepithelial fibrosis [56].

From both a physiological and pharmacological point of view,
sensitised guinea pigs may be preferable as an animal model
for investigating mechanisms of early and late asthmatic
reactions and AHR in asthma [54, 57, 58, 68–71]. For example,
measurements in conscious and unrestrained animals demon-
strate allergen-induced early and late asthmatic reactions,
eosinophilic airway inflammation and AHR following both the
early and the late reaction with a striking similarity to that seen
in human allergic asthma, in both a qualitative and a
quantitative sense [57, 70]. In addition, compared with rodents
such as mice and rats, airway smooth muscle responsiveness
and autonomic reflexes in guinea pigs more closely resemble
those of human airways [54, 69]. Furthermore, various features

of airway remodelling have been observed after repeated
allergen challenge [72–74], which have been associated with
AHR ex vivo [73]. From a technical point of view, disadvan-
tages of the guinea pig as an experimental animal may be the
nonavailability of genetically modified animals and the relative
scarcity of immunological tools for this species, although the
latter circumstance is rapidly improving.

ACUTE MODULATION OF AHR

Nitric oxide and arginase
Nitric oxide (NO) is a ubiquitous molecule in mammalian
species, serving as a signalling molecule that is involved in the
control of almost every cellular and organ function in the body,
including the airways [75, 76]. In the respiratory tract, isoforms
of constitutive NO synthase (NOS; cNOS) are mainly
expressed in iNANC neurons (neuronal NOS (nNOS)), the
endothelium (endothelial NOS (eNOS)) and the epithelium
(nNOS and eNOS), which are primarily involved in the
regulation of airway and vascular smooth muscle tone [76–
78]. Moreover, eNOS-derived NO has been shown to inhibit
airway inflammation by suppressing the activation of nuclear
factor-kB, thereby inhibiting the expression of inducible NOS
(iNOS), as well as the production of inflammatory cytokines
[79–82]. In inflamed asthmatic airways, there is marked
upregulation of iNOS expression, particularly in epithelial
and inflammatory cells, including macrophages, eosinophils
and neutrophils [76, 83, 84], which is associated with greatly
increased production of NO and increased concentrations of
NO in exhaled air [76, 85]. In experimental asthma, iNOS is
induced in the airways during the allergen-induced late
asthmatic reaction, leading similarly to increased levels of
NO in exhaled air [86, 87]. High concentrations of iNOS-
derived NO have been considered to be detrimental in the
airways since they contribute to increased vascular perme-
ability, mucus hypersecretion, inflammatory cell infiltration,
epithelial cell damage and perpetuation of the Th2-mediated
inflammatory response in the airways [76]. Most if not all of
the deleterious effects induced by iNOS-derived NO may
proceed via formation of peroxynitrite (ONOO-), a highly
reactive oxidant synthesised by the rapid reaction of NO with
superoxide anion (O2

-), generated in the inflamed airways [88,
89]. Significant correlations between exhaled NO level, airway
eosinophilia and AHR have been observed in asthmatics,
whereas all of these parameters are reduced after glucocorti-
costeroid treatment [89–92]. Based on these observations, the
NO concentration in exhaled air has been adopted as a sensitive
marker of airway inflammation [93]. Therefore, it is not
surprising that much of the literature regarding NO in asthma
has long been focused on iNOS and is heavily biased towards a
harmful pro-inflammatory role of NO. However, given the
variety of enzymatic and cellular sources of NO in the airways,
the different cellular targets and physiological effects of NO, as
well as the influence of the local microenvironment on NO
homeostasis, the relevance of increased exhaled NO levels to
discrete pathophysiological processes in the airway wall may be
difficult to determine. Indeed, various studies in animal models
and patients have now indicated that AHR and inflammation of
the airways is caused by failure of both cNOS- and iNOS-
derived NO to exert bronchodilatory and anti-inflammatory
effects rather than by an excess of NO [94].

H. MEURS ET AL. MODEL STUDIES OF AHR

c
EUROPEAN RESPIRATORY JOURNAL VOLUME 32 NUMBER 2 489



In a guinea pig model of acute allergic asthma, in the absence
of iNOS expression, which is induced during the late asthmatic
reaction or by chronic allergen exposure in this model, it was
demonstrated that the exhaled NO level is transiently
increased immediately after allergen challenge, followed by a
fall to below control levels [95]. The decrease in NO production
could well contribute to the early asthmatic reaction, as well as
to the ensuing AHR. Indeed, both in vivo and ex vivo studies
using the same species indicate that a deficiency of both
epithelial and neuronal cNOS-derived NO underlies the
development of AHR following the allergen-induced early
asthmatic reaction (fig. 1) [77, 96, 97]. A deficiency of cNOS
activity and endogenous bronchodilating NO contributing to
AHR was also demonstrated after repeated allergen challenge
of sensitised guinea pigs [98, 99]. Importantly, it was
demonstrated that a reduction in cNOS-derived NO may also
contribute to AHR in patients with severe asthma [100], and
may similarly be induced by allergen exposure [101].
Interestingly, decreased cNOS (presumably iNANC)-derived
NO could also contribute to reduced bronchoprotection by
means of deep inspiration in asthmatic patients, which has
been recognised as an important factor contributing to AHR
[102–105].

Various mechanisms have been implicated in allergen-induced
NO deficiency. Reduced expression of eNOS or nNOS has been
observed after repeated allergen challenge in guinea pigs and
mild asthmatic patients, respectively [101, 106]. In addition, it
has been demonstrated that reduced bioavailability of L-
arginine, the substrate for NOS, may underlie the deficiency in
NO and subsequent AHR [96, 107]. Animal studies have
indicated that polycationic proteins, including eosinophil-
derived major basic protein (MBP), inhibit cellular uptake of L-
arginine by cationic amino acid y+ transporters [108], which may
contribute to the deficiency in cNOS-derived NO and AHR after
the early asthmatic reaction [109, 110]. A second mechanism that
might be crucial in the reduced bioavailability of NO in the
airways is increased utilisation of L-arginine by arginase, which
hydrolyses L-arginine to L-ornithine and urea (fig. 1) [94, 111,
112]. Arginase I and II are both expressed constitutively in the
airways, particularly in epithelial cells, (myo)fibroblasts and
alveolar macrophages [113–115]. In guinea pigs, it has been
discovered that arginase activity is functionally involved in
basal airway responsiveness by limiting cNOS-derived NO
production [116]. Using airway preparations from the same
animal model, it was demonstrated that increased arginase
activity may be involved in allergen-induced AHR and reduced
iNANC relaxation after the early asthmatic reaction [96, 111].
Moreover, reduced L-arginine availability to iNOS, induced by
increased arginase activity as well as reduced transport of the
amino acid, may lead to synthesis of both NO and O2

- by this
enzyme [117], effectively causing the production of ONOO-,
which may contribute to the AHR after the late asthmatic
reaction [118, 119].

In various mouse and rat models, it has been confirmed that
allergen challenge causes a considerable increase in the
expression and activity of particularly arginase type I, most
probably via Th2 cytokines involved in the asthmatic airway
inflammation [120–127]. Notably, by microarray analysis of
gene expression in Balb/c mice sensitised to ovalbumin or
Aspergillus fumigatus, it was shown that, among the 291 common

genes that were induced by these allergens, enzymes involved
in L-arginine metabolism, particularly arginase I and II,
belonged to the most predominantly overexpressed genes [127].

Recent studies in asthmatic patients have also indicated
increased expression of arginase I in the airways, particularly
in epithelial and inflammatory cells [127]. In addition, in
asthmatics experiencing an exacerbation, a striking reduction
in plasma L-arginine levels has been measured, which was
associated with an increase in serum arginase activity [128].
Moreover, increased immunoreactivity against arginase I,
which could possibly be induced by nicotine, was recently
observed in both the epithelium and the smooth muscle layer
of smoking asthmatics [129]. Interestingly, single nucleotide
polymorphisms of arginase I and II have recently been found
to be associated with atopy and risk of childhood asthma,
respectively [130].

Increased metabolism of L-arginine by arginase in the airways
may not only compromise NO homeostasis, leading to AHR as
a result of reduced bronchodilation and enhanced inflamma-
tion, but may also contribute to airway remodelling in chronic
disease, through NO-independent pathways mediated by
increased production of L-ornithine. Thus L-ornithine is a
precursor of the arginase downstream products L-proline and
polyamines, which could promote collagen production and
growth of mesenchymal cells, such as fibroblasts and smooth
muscle cells, respectively [94, 131, 132]. In support of a
potential role of arginase in airway fibrosis in asthma, IL-4
and -13 increase arginase I and II expression and arginase
activity in cultured rat fibroblasts [114]. In addition, increased
levels of polyamines have been observed in mouse lung
following allergen challenge [127] and in the serum of
asthmatic patients [133], respectively. A role for decreased
NO synthesis in airway remodelling can also be envisaged,
since NO inhibits proliferation of airway smooth muscle cells
[134]. Moreover, reduced NO synthesis could contribute to
airway remodelling by increasing the activity of ornithine
decarboxylase, which converts L-ornithine to polyamines [135].
The role of arginase in asthmatic airway remodelling remains
to be established however.

Cholinergic mechanisms
The parasympathetic nervous system represents a major
bronchoconstrictory pathway. During normal breathing, pre-
ganglionic nerves innervating the parasympathetic ganglia in
the airways evoke action potentials with relatively high
frequencies, in the range 10–20 Hz [136]. As a result, basal
airway smooth muscle tone in vivo is mediated to a significant
extent by both ganglionic and post-ganglionic cholinergic
nerve activity, of which acetylcholine is the major neurotrans-
mitter. The fidelity with which pre-ganglionic impulses are
translated into post-ganglionic action potentials is relatively
low, implying a filtering function of these ganglia. Various
acute inflammatory mediators, including histamine, prosta-
glandin (PG) D2 and bradykinin, are able to reduce this
filtering function, and, consequently, to enhance ganglionic
cholinergic transmission [137]. The same is true for tachykinins
(substance P and neurokinin A) released by nonmyelinated
sensory C-fibres in the airways [138]. The release of acetylcho-
line from parasympathetic nerve endings is regulated by a
variety of prejunctional receptors that may inhibit or facilitate

MODEL STUDIES OF AHR H. MEURS ET AL.

490 VOLUME 32 NUMBER 2 EUROPEAN RESPIRATORY JOURNAL



neurotransmitter outflow. Autoinhibitory muscarinic M2

receptors, activated by acetylcholine itself, represent an
important negative feedback, limiting further release, particu-
larly at higher frequencies [139]. In animal models of allergic
and viral airway inflammation and asthma, dysfunction of
these M2 autoreceptors has been found to contribute to
exaggerated acetylcholine release from vagal nerve endings,
increased cholinergic reflex activity in response to inhaled
stimuli and AHR [140–142]. In allergic guinea pigs, the
magnitude of the early asthmatic reaction has been reported
to correlate significantly with the extent of M2 autoreceptor
dysfunction [142]. M2 autoreceptors have also been found to be
dysfunctional in some but not all asthmatics [143–145]. In
addition, asthmatics with active viral infections show greater
bronchodilatory responses to inhaled anticholinergics, suggest-
ing increased vagal tone [146]. Most of the M2 autoreceptor
dysfunction is caused by activated eosinophils that migrate to
cholinergic nerves and release MBP, which acts as an allosteric
M2 antagonist [147–149]. Taking into consideration the fact that
prejunctional M2 receptor function is more prominent in the
larger airways [150], it is no surprise that M2 autoreceptor
dysfunction is more prominent in asthma than in chronic
obstructive pulmonary disease (COPD). Indeed, in patients
with stable COPD, M2 autoreceptors appear to function
normally [151], although this does not exclude dysfunction

during acute exacerbations. Viral infections, which may play a
role in exacerbations of both asthma and COPD, induce
dysfunction through neuraminidases that cleave portions of
the M2 receptor, and through as yet incompletely characterised
mechanisms involving macrophages, CD8+ lymphocytes and
possibly interferon-c [152].

In addition to M2 autoreceptors, a variety of heteroreceptors
modulating acetylcholine release have been identified in
cholinergic nerve terminals. Catecholamines may inhibit or
facilitate acetylcholine overflow through prejunctional a2- and
b2-adrenoceptors, respectively [153–155]. Neurokinins such as
substance P may enhance cholinergic transmission through
facilitatory neurokinin-1 and/or -2 receptors [156, 157].
Interestingly, substance P may also induce MBP release from
eosinophils, causing M2 autoreceptor dysfunction, which could
act synergistically to direct facilitation [158]. Allergic-
inflammation-derived prostanoids, including PGD2, PGF2a

and thromboxane A2, as well as histamine, can also augment
acetylcholine release through prejunctional receptors [138].
Taken together, the above observations indicate that para-
sympathetic acetylcholine release is governed by various
regulatory systems, the set point of which is subject to
environmental modulation. During periods of airway inflam-
mation, these modulations often result in enhanced cholinergic

���������	�

���
����
����������
���
�
����������������
��
�������
����
����������

�
� ��


���
����

���� 
!
����"


�
�#���$%����
%&$���

��
�����

���$���
��������

'()��

*+
����
&%

 ����
�
��
��� ���
��$�

 ��
��&��
������ ����
��
���,�&���

�-���������	�

���
����
����������
���
�
����������������
��
�������
����
����������

�
�#���$%����
%&$���

�
� ��

��
���$���
��������

���
 ����
�
��

 ��
��&��
��� ����
��
���,�&���

���
��$�

*+
����
&%

�-

FIGURE 1. Mechanisms of airway hyperresponsiveness: a) healthy airway; and b) asthmatic airway. Airway hyperresponsiveness in asthma has a variable component,

caused by acute inflammatory events, and a chronic component, caused by chronic inflammation resulting in structural and phenotypic changes to the airway smooth

muscle. In the asthmatic airway, acute hyperresponsiveness is caused, in part, by the enhanced presence of mediators released from inflammatory cells (e.g. histamine and

leukotrienes) that directly induce bronchoconstriction and enhance bronchoconstrictor responses to other agonists. In addition, these inflammatory mediators enhance

acetylcholine (ACh) release by activating afferent sensory nerve fibres and directly facilitating ganglionic neurotransmission and ACh release from the vagal nerve terminal.

ACh release is also augmented by dysfunction of prejunctional muscarinic M2 autoreceptors, caused by the release of the eosinophil product major basic protein (MBP),

which acts as an M2 recepter antagonist. Moreover, MBP may cause epithelial damage and increased exposure of afferent sensory nerve fibres. Conversely, the release of

bronchodilating nitric oxide (NO) is reduced during airway inflammation as a result of reduced L-arginine availability in the airway epithelium and inhibitory nonadrenergic–

noncholinergic nerve endings. Moreover, a low L-arginine concentration promotes the formation of procontractile and pro-inflammatory peroxynitrite (ONOO-), by promoting

simultaneous production of NO and superoxide anion by inducible NO synthase (NOS). The reduction in L-arginine availability is the result of increased expression of the L-

arginine-consuming enzyme arginase in response to T-helper cell type 2 cytokines (interleukin-4 and -13), as well as inhibition of cationic amino acid transporters by MBP. The

enhanced presence of cytokines, growth factors, mediators and contractile neurotransmitters, as well as the reduced presence of NO, also promotes chronic structural and

phenotypic changes to the airway smooth muscle layer that superimpose on the variable response to further enhance airway hyperresponsiveness. These structural and

phenotypic changes include the enhanced expression of contractile proteins and contraction-regulatory proteins (e.g. smooth muscle (SM) myosin heavy chain (SM-MHC),

SM myosin light chain kinase (SM-MLCK), CD38 and RhoA, as well as airway smooth muscle thickening caused by airway smooth muscle hyperplasia and hypertrophy.

Collectively, these variable and chronic changes to the airway wall promote airway hyperresponsiveness. TGF-b: transforming growth factor-b. q: increase; Q: decrease.
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transmission (fig. 1). Thus AHR following the early asthmatic
reaction is reversed by anticholinergics [141], and the
bronchoconstrictor response of inhaled inflammatory media-
tors (e.g. histamine and thromboxane A2) is, to a large extent,
mediated by cholinergic pathways [141, 159].

Acetylcholine released by post-ganglionic parasympathetic
nerves may choose to interact with any one of five muscarinic
receptor subtypes, M1–M5. Most organs and tissues express
more than one subtype, and this is also true for many
individual cells. In mammalian airways, including those of
humans, M1, M2 and M3 receptors are the most important. M1

receptors are present in type II alveolar cells, presumably
mediating/contributing to surfactant production [160, 161], as
well as in parasympathetic airway ganglia, where they
facilitate ganglionic transmission [138]. Thus vagal broncho-
constriction, induced by sulphur dioxide inhalation, has been
found to be especially sensitive to inhaled pirenzepine, an M1-
selective antagonist [162]. M2 and M3 receptors represent the
major populations, however, in both intra- and extrapulmon-
ary airways. Postjunctional receptor populations in airway
smooth muscle are a mixture of M2 and M3 receptors, the Gi-
protein (Gi)-coupled M2 subtype being predominant, particu-
larly in the larger airways. Contraction, however, is primarily
mediated by Gq-protein (Gq)-coupled M3 receptors, even in
those smooth muscle preparations in which the ratio of M2:M3

is 90:10, the M2 receptor population playing, at most, a minor
supporting role [161]. This was confirmed in airway smooth
muscle preparations from M2 receptor knockout mice, in
which carbachol was barely less potent than in preparations
from wild-type mice [163].

The principal signalling of Gq-coupled receptors is activation
of phospholipase C, mediating hydrolysis of phosphatidylino-
sitol 4,5-bisphosphate into inositol 1,4,5-triphosphate (IP3) and
1,2-diacylglycerol (DAG). IP3 mobilises Ca2+ ions from
intracellular stores, generating a rapid and transient rise in
cytosolic free Ca2+ concentration. DAG triggers the transloca-
tion and activation of protein kinase C, which is able to
phosphorylate a variety of protein substrates [164]. Cross-talk
between Gi-coupled M2 receptors and Gs-protein (Gs)-coupled
b-adrenoceptors (having opposing effects on cyclic AMP
accumulation) has no major effects on modulation of
muscarinic-agonist-induced contraction or b-agonist-induced
relaxation, at least under physiological conditions [165]. In
contrast, Gq-coupled M3 receptors may have a major influence
on b-adrenoceptor function, even in noninflamed airways. This
is due to DAG-induced activation of protein kinase C, which
may: 1) phosphorylate the b2-adrenoceptor, as well as Gs,
causing receptor uncoupling and desensitisation [165]; and 2)
phosphorylate and activate b-adrenoceptor kinases, which are
members of the G-protein-coupled receptor kinase family,
amplifying homologous b-agonist induced desensitisation
[166, 167]. These processes may explain the well-known
attenuation of b-agonist efficacy during episodes of severe
bronchoconstriction, for example during exacerbations.

In contrast to the enhanced release of acetylcholine due to
neuronal mechanisms associated with inflammation, as dis-
cussed above, no evidence for upregulation of postjunctional
M3 and M2 receptors has been found in hyperresponsive
airways of patients with asthma and COPD. However,

increased expression and enhanced function of signalling
molecules involved in muscarinic-agonist-induced smooth
muscle contraction (and mucus secretion) have been identified.
Thus several pro-inflammatory cytokines, including IL-1b and
tumour necrosis factor-a, increase Gaq and Gai expression in
airway smooth muscle, which could account for the increased
Ca2+ responses to muscarinic agonists and contraction [168,
169]. Coupling of the M3 receptor to CD38 enhances the
production of cyclic ADP ribose and the release of Ca2+ ions
through ryanodine-sensitive stores in the sarcoplasmic reticu-
lum [170]. IL-1b, tumour necrosis factor-a, IL-13 and
interferon-c have also been reported to enhance Ca2+ responses
to muscarinic agonists through this mechanism, via increasing
CD38 expression [171–174]. Conversely, CD38-deficient mice
show reduced AHR towards methacholine, both in vivo and
ex vivo, following IL-13 challenge [175]. Collectively, these
studies indicate that airway inflammation results in increased
cholinergic bronchoconstrictor responses of the asthmatic
airway, caused by enhanced neuronal release of acetylcholine
and enhanced airway smooth muscle expression of signalling
molecules central to muscarinic receptor function.

Rho kinase
Contraction of airway smooth muscle is primarily regulated by
Ca2+-dependent mechanisms, initiated by a (rapid) rise in
intracellular Ca2+ concentration, followed by the formation of
Ca2+ complexes, which, in turn, activate myosin light chain
(MLC) kinase, finally resulting in phosphorylation of the 20-
kDa regulatory MLC (MLC20). However, Ca2+-independent
mechanisms, characterised by augmented smooth muscle
shortening at a fixed Ca2+ concentration are also important.
This phenomenon is referred to as Ca-2+- sensitisation [176].
Key regulatory factors of the Ca2+ sensitivity of airway smooth
muscle are Rho kinase and the small monomeric G-protein
RhoA, its main activator. The RhoA/Rho kinase cascade can be
stimulated by a variety of receptors, including those coupled to
G12/13, Gi and Gq. Activated Rho kinase phosphorylates,
amongst others, MLC phosphatase (MLCP), which causes
dephosphorylation of MLC20; as a consequence, MLCP is
inactivated, resulting in enhancement of MLC20 phosphoryla-
tion and augmented contraction [41]. Based on this property,
and on the pronounced activation of the RhoA/Rho kinase
pathway by inflammatory mediators, a role for this pathway in
AHR in asthma was recently postulated [41].

The extent to which Rho kinase activation contributes to
airway smooth muscle contraction is both agonist- and
receptor-dependent. In bovine tracheal smooth muscle pre-
parations, full and partial muscarinic agonists, acting through
M3 receptors, are differentially dependent upon Rho kinase for
their contractile effects [177]. In the lower concentration ranges,
all agonists were sensitive to the Rho kinase inhibitor (+)-(R)-
trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide
(Y-27632); in contrast, Y-27632 only reduced maximal contrac-
tions induced by partial agonists (such as pilocarpine),
whereas the maximal contractions induced by the full agonist
methacholine were unaffected. Indeed, an inverse relationship
between Ca2+ mobilisation, as well as Ca2+ influx, and the Rho
kinase dependency of the contraction induced by these
agonists was found [177]. Intriguingly, in both human
bronchial [178] and guinea pig tracheal [179, 180] smooth
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muscle preparations, it was found that growth factors and
insulin, which act through receptor tyrosine kinases, induce
moderate contractions that are totally Rho-kinase-dependent.

In animal models of inflammatory airways disease, evidence
indicating a primed role for Rho A/Rho kinase in enhancing
obstructive airway responses is accumulating. Thus the
functional contribution of Rho kinase in acetylcholine-induced
rat bronchial smooth muscle contraction is increased after
repeated allergen challenge [181], and parallelled by increased
translocation of RhoA to the membrane [182]. Furthermore,
active allergic sensitisation of guinea pigs without subsequent
allergen exposure is already sufficient to increase RhoA
expression and enhance its contribution to contraction ex vivo
and airway responsiveness in vivo [183]. Remarkably, similar
observations were made using passively sensitised guinea pig
airway preparations [184], and recent data indicate that the
same is true for cigarette-smoke-induced hyperresponsiveness
of rat bronchial smooth muscle [185]. In vivo experiments using
a guinea pig model of asthma have further indicated that
increased Rho kinase activity contributes to the allergen-
induced AHR following both the early and late asthmatic
reaction, which is effectively reversed by inhalation of Y-27632
[186]. These data indicate that enhanced Rho/Rho kinase
signalling is a feature of AHR in animal models of asthma; its
role in human subjects remains to be determined however.

AIRWAY SMOOTH MUSCLE REMODELLING AND AHR
Structural and phenotypic alterations of airway smooth
muscle in asthma
In addition to its central role in limiting airflow and regulating
variable AHR, it is increasingly evident that chronic structural
and phenotypic alterations of the airway smooth muscle
superimpose upon the variable response to exaggerate airway
smooth muscle contraction (fig. 1) [4]. The smooth muscle mass
that encircles the airways and regulates the luminal diameter is
considerably thicker in asthmatics [187]. Detailed analyses of the
airway smooth muscle bundle obtained from asthmatics have
indicated that increases in both airway smooth muscle cell
number (hyperplasia) and cell size (hypertrophy) contribute to
this response, although the extent to which these processes
determine the increase in muscle mass may vary among patients
[188–190]. Based on differences in smooth muscle structural
characteristics, EBINA et al. [189] even proposed different asthma
phenotypes, one characterised primarily by smooth muscle
hyperplasia in the central bronchi and another by smooth
muscle hypertrophy throughout the bronchial tree. The exact
contribution of airway smooth muscle thickening to AHR is not
yet completely clear. However, mathematical modelling studies
indicate that airway smooth muscle thickening is probably of
major importance, perhaps even the primary cause of exagger-
ated airway narrowing, in the remodelled airway [27, 29].
Importantly, these changes in airway structure worsen with
duration of disease, which could contribute to a chronic increase
in severity of airway narrowing [191].

Airway smooth muscle proliferation and hypertrophy have
been extensively studied in cell culture and animal models of
asthma. These studies have revealed that numerous growth
factors, contractile agonists, cytokines, proteases and matrix
proteins contribute to these responses [7, 192]. Moreover,
recent studies indicate that asthmatic airway smooth muscle

cells are characterised by an intrinsic functional change,
facilitating cell proliferation in culture [52]. This intrinsic
change is partially explained by changes in extracellular matrix
protein deposition by asthmatic airway smooth muscle [9].
Thus, when normal human airway smooth muscle cells are
cultured on an extracellular matrix laid down by asthmatic
airway smooth muscle cells, the normal cells also show an
increased proliferation rate [9]. Abnormal extracellular matrix
production, including increases in fibronectin, are also
responsible for the enhanced synthetic capacity of airway
smooth muscle cells in the production of eotaxin [51]. A recent
study indicated that, in addition to this abnormality, asthmatic
airway smooth muscle expresses increased numbers of
mitochondria and exhibits increased mitochondrial activity
[53]. Increased mitochondrial biogenesis by asthmatic airway
smooth muscle is accompanied by increased expression of
mitochondrial transcription factor A. Interestingly, the increase
in mitochondrial activity and biogenesis is coupled to an
increased proliferation rate of these cells [53]. Collectively,
these intrinsic biochemical differences suggest that an intrinsic
functional change in the asthmatic airway smooth muscle
makes the muscle more responsive to mitogens [52, 53, 193,
194]. However, the pathogenic cause of this intrinsic functional
change remains unknown.

Asthmatic airway smooth muscle may also produce enhanced
contractile responses because of changes in its phenotype that
are associated with increased expression of contractile proteins
and contraction-regulatory proteins. Isolated asthmatic airway
smooth muscle cells have been reported to contract more
profoundly and more rapidly in vitro [49]. Furthermore,
passive sensitisation of human bronchi with atopic serum
increases maximal contractility and agonist sensitivity in vitro
[195]. Interestingly, this effect is associated with serum IgE
[196], suggesting a relationship between allergic sensitisation
and increased contractile responsiveness. In a canine model of
allergic sensitisation, similar effects have been revealed
following active sensitisation [197, 198]. This increase in
contractility is accompanied by increases in MLC kinase
expression, in both the canine model [199] and sensitised
human airway smooth muscle [188, 200].

Studies using animal models of allergic asthma have demon-
strated additional changes in gene expression following
sensitisation and/or repeated allergen exposure that may
explain increases in the contractile properties of the muscle; the
importance of these changes remains to be confirmed for
human asthmatic subjects however. RhoA expression (as
discussed above) is increased in repeatedly allergen-chal-
lenged rats and allergen-sensitised guinea pigs, which may
contribute to increased agonist-induced Ca2+ sensitisation in
the muscle [41, 181, 183]. A similar role has been identified for
the protein CD38, which regulates cyclic ADP ribose produc-
tion and subsequent activation of ryanodine receptors on
intracellular Ca2+stores [170, 171]. The reported increase in
mitochondrial biogenesis by asthmatic airway smooth muscle
may also contribute to this response, since mitochondria play a
known role in airway smooth muscle Ca2+ homeostasis [53].

Expression of contractile proteins, including smooth muscle
myosin heavy chain (SM-MHC), is also increased after
repeated allergen challenge in guinea pigs [73]. SM-MHC
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exists in several isoforms caused by alternative splicing of a
single gene. The so-called (+)insert isoform (also called SM-B),
characterised by a seven amino acid insert close to the N-
terminus, is characterised by increased cross-bridge cycling
activity [201]. Interestingly, a recent study indicated that the
expression of the (+)insert of SM-MHC is increased in the
hyperresponsive Fisher rat strain, suggesting that this mechan-
ism could also contribute to AHR [202]. These cell and animal
studies collectively suggest that changes in the expression of
myosin and in proteins that regulate the dynamics of agonist-
induced myosin phosphorylation may contribute to allergen-
induced AHR. The importance of these findings to the human
situation has only partially been revealed and future studies
are required in this area.

Pathophysiological mechanisms
The next relevant question concerns which endogenous
mediators regulate these responses and whether or not they
can be used as pharmacological targets. From in vitro studies, it
is well established that a variety of growth factors, G-protein-
coupled receptor agonists, cytokines, proteases and matrix
proteins can contribute to the aforementioned responses [7].
Relatively few data are available from animal models, however,
although recent research indicates that cysteinyl leukotrienes,
acetylcholine and transforming growth factor-b (TGF-b) act as
important endogenous mediators of airway smooth muscle
remodelling in vivo, suggesting that targeting these may be of
therapeutic value. The focus in this section is, therefore, on these
mediators, especially since drugs targeting cysteinyl leuko-
trienes and acetylcholine are already clinically available.

Cysteinyl leukotrienes probably play an important regulatory
role in airway smooth muscle remodelling. In 1993, WANG et al.
[203] demonstrated that blockade of the cysteinyl leukotriene
receptor 1 was sufficient to significantly reduce the increase in
airway smooth muscle mass observed following repeated
allergen exposure in Brown Norway rats. Similar observations
were subsequently made in a murine model, showing that the
increase in airway smooth muscle mass and increases in Penh
following allergen exposure were reduced by treatment of the
mice with montelukast [204]. The observation that montelukast
administration is able to completely reverse remodelling of the
airway smooth muscle bundle, with the experimental treat-
ment starting only after repeated allergen challenges were
completed, is spectacular [205]. These data indicate that
cysteinyl leukotrienes may play a significant role in the onset
and the maintenance of allergen-induced airway smooth
muscle thickening.

Cysteinyl leukotrienes probably mediate this response via
multiple mechanisms. Cell culture studies indicate that
cysteinyl leukotrienes augment the proliferative response of
peptide growth factors such as epidermal growth factor (EGF)
[206]. Whether or not cysteinyl leukotrienes act as airway
smooth muscle mitogens per se remains the subject of debate
[206, 207]. The mechanisms responsible for this response have
been partially elucidated and appear to involve reactive
oxygen species generation and p42/p44 mitogen-activated
protein kinase activation, key players in the mitogenic
response of airway smooth muscle [207]. These direct effects
on the muscle are, however, not the only explanation for the
observed effects. Cysteinyl leukotrienes regulate airway

inflammation in response to allergen challenge and induce
growth factor release from airway structural cells. Thus
montelukast inhibits airway eosinophilia and cytokine/che-
mokine expression in response to allergen challenges in a
murine model of asthma [204, 205]. In addition, it was recently
established that cysteinyl leukotrienes induce the release from
airway epithelial cells of TGF-b [208], a key growth factor in
many of the structural and phenotypic abnormalities of
asthmatic airway smooth muscle, as described below.
Therefore, it is likely that these indirect responses too are
responsible for the reduction in smooth muscle mass by
montelukast.

Acetylcholine, the primary parasympathetic neurotransmitter
in the airways, is traditionally associated with bronchocon-
striction and mucus secretion. Recent findings are changing
this traditional view since acetylcholine production in the
airways appears not to be restricted to the parasympathetic
nervous system; it is also released from non-neuronal sources,
such as the bronchial epithelium and several inflammatory
cells [164, 209, 210]. Interestingly, acetylcholine (either
neuronal or non-neuronal) also appears to regulate remodel-
ling in a guinea pig model of chronic asthma [72, 73].
Tiotropium treatment of these guinea pigs significantly
reduced airway smooth muscle thickening, and had similar
protective effects on allergen-induced increases in pulmonary
SM-MHC expression and tracheal contractility [73]. This
indicates that acetylcholine regulates multiple structural and
phenotypic changes in airway smooth muscle caused by
allergen exposure.

As observed for cysteinyl leukotrienes, muscarinic receptors
on airway smooth muscle also appear to regulate the mitogenic
response of airway smooth muscle. The mitogenic effects of
platelet-derived growth factor and EGF, for instance, are
enhanced, although muscarinic receptors do not themselves
mediate mitogenic responses [211, 212]. The augmentation is
dependent upon M3 receptors, which augment the intracellular
signalling of growth factors by cooperatively regulating
phosphorylation of p70S6 kinase and glycogen synthase
kinase-3, both resulting in increased cell cycle progression
[212, 213]. Preliminary evidence also indicates that muscarinic
receptors regulate the expression of SM-MHC by airway
smooth muscle [214]. Nonetheless, it is not unlikely that
indirect effects of acetylcholine also contribute to this response.
As mentioned earlier, (non-neuronal) acetylcholine regulates
aspects of airway inflammation, including eosinophilia in
response to allergen exposure and neutrophilia in response to
diesel particle inhalation [72, 215]. Indirect inhibition of airway
smooth muscle structural and phenotypic alterations by
anticholinergics is therefore also a possibility.

TGF-b, although not a direct target of drugs marketed for
asthma treatment at the moment, appears to be among the
most relevant growth factors mediating chronic structural and
phenotypic changes in airway smooth muscle. Antibodies
directed against TGF-b, administered intraperitoneally to mice
during an antigen challenge protocol, significantly reduced the
increase in airway smooth muscle mass without inducing
drastic alterations in inflammatory cell recruitment or pul-
monary cytokine expression [216]. Likewise, in a Brown
Norway rat model of asthma, the TGF-b receptor 1 kinase
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inhibitor SD-208 reduced allergen-induced AHR, airway
smooth muscle cell proliferation in situ and muscle thickness
[217]. These studies indicate that TGF-b plays a prominent role
in allergen-induced airway smooth muscle structural changes,
and in the associated AHR.

The prominent role of TGF-b is further revealed by in vitro
studies indicating that TGF-b plays an important role in most
of the structural and phenotypic changes that are observed in
asthma. TGF-b induces airway smooth muscle proliferation,
which, interestingly, is partially dependent upon reactive
oxygen species generation, as the result of enhanced transcrip-
tional regulation of reduced nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase 4, a catalytic homologue of
NADPH oxidase [218]. TGF-b also regulates transcription and
translation of contractile proteins and induces airway smooth
muscle cell hypertrophy, with the involvement of
phosphatidylinositol-3’-kinase and downstream signalling
[219]. This indicates that drugs targeting TGF-b-dependent
signalling could achieve a reduction in several smooth muscle
abnormalities seen in asthma, although this still needs to be
assessed in human subjects.

CONCLUSIONS
In vitro model systems and animal models of allergic asthma
have been successfully applied to the investigation of the
mechanisms of acute and chronic airway hyperresponsiveness.
In particular, the rapidly growing interest in the role of the
airway smooth muscle cell, as a multicompetent cell that may
be involved in both functional and structural changes in the
airways, has produced interesting novel concepts of patho-
physiological mechanisms and has disclosed new directions
for future drug treatment. The majority of these mechanisms
are linked to acute and chronic inflammatory processes in the
airway wall, associated with the release of mediators, growth
factors and neurotransmitters that may alter airway smooth
muscle function by changes in neural and non-neural control,
receptor-mediated signalling pathways, and proliferation and
maturation of the muscle cells. Most of these concepts are
awaiting translation to the asthmatic patient. Moreover, future
studies should also be directed towards critical questions
addressing the causal role of inflammation, the functional
significance of airway remodelling and the role of genetics in
airway hyperresponsiveness.
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