Skip to main content

Main menu

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • For authors
    • Instructions for authors
    • Submit a manuscript
    • Author FAQs
    • Open access
    • COVID-19 submission information
  • Alerts
  • Podcasts
  • Subscriptions
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

User menu

  • Log in
  • Subscribe
  • Contact Us
  • My Cart

Search

  • Advanced search
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

Login

European Respiratory Society

Advanced Search

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • For authors
    • Instructions for authors
    • Submit a manuscript
    • Author FAQs
    • Open access
    • COVID-19 submission information
  • Alerts
  • Podcasts
  • Subscriptions

High-frequency oscillatory ventilation is not superior to conventional mechanical ventilation in surfactant-treated rabbits with lung injury

D Gommers, A Hartog, R Schnabel, A De Jaegere, B Lachmann
European Respiratory Journal 1999 14: 738-744; DOI:
D Gommers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Hartog
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Schnabel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A De Jaegere
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Lachmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The aim of this study was to compare high-frequency oscillatory ventilation (HFOV) with conventional mechanical ventilation (CMV) with and without surfactant in the treatment of surfactant-deficient rabbits. A previously described saline lung lavage model of lung injury in adult rabbits was used. The efficacy of each therapy was assessed by evaluating gas exchange, lung deflation stability and lung histopathology. Arterial oxygenation did not improve in the CMV group without surfactant but increased rapidly to prelavage values in the other three study groups. During deflation stability, arterial oxygenation decreased to postlavage values in the group that received HFOV alone, but not in both surfactant-treated groups (HFOV and CMV). The HFOV group without surfactant showed more cellular infiltration and epithelial damage compared with both surfactant-treated groups. There was no difference in gas exchange, lung deflation stability and lung injury between HFOV and CMV after surfactant therapy. It is concluded that the use of surfactant therapy in combination with high-frequency oscillatory ventilation is not superior to conventional mechanical ventilation in improving gas exchange, lung deflation stability and in the prevention of lung injury, if lungs are kept expanded. This indicates that achieving and maintaining alveolar expansion (i.e. open lung) is of more importance than the type of ventilator.

PreviousNext
Back to top
Vol 14 Issue 4 Table of Contents
  • Table of Contents
  • Index by author
Email

Thank you for your interest in spreading the word on European Respiratory Society .

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
High-frequency oscillatory ventilation is not superior to conventional mechanical ventilation in surfactant-treated rabbits with lung injury
(Your Name) has sent you a message from European Respiratory Society
(Your Name) thought you would like to see the European Respiratory Society web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
High-frequency oscillatory ventilation is not superior to conventional mechanical ventilation in surfactant-treated rabbits with lung injury
D Gommers, A Hartog, R Schnabel, A De Jaegere, B Lachmann
European Respiratory Journal Oct 1999, 14 (4) 738-744;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
High-frequency oscillatory ventilation is not superior to conventional mechanical ventilation in surfactant-treated rabbits with lung injury
D Gommers, A Hartog, R Schnabel, A De Jaegere, B Lachmann
European Respiratory Journal Oct 1999, 14 (4) 738-744;
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Full Text (PDF)

Jump To

  • Article
  • Info & Metrics
  • PDF
  • Tweet Widget
  • Facebook Like
  • Google Plus One

More in this TOC Section

  • Allergen inhalation associated with airway dysfunction
  • OSTEOPOROSIS AND FACTURE RISK ASSOCIATED WITH ICS USE IN COPD
  • Cost-effectiveness of azithromycin in reducing asthma exacerbations
Show more Original Articles

Related Articles

Navigate

  • Home
  • Current issue
  • Archive

About the ERJ

  • Journal information
  • Editorial board
  • Reviewers
  • CME
  • Press
  • Permissions and reprints
  • Advertising

The European Respiratory Society

  • Society home
  • myERS
  • Privacy policy
  • Accessibility

ERS publications

  • European Respiratory Journal
  • ERJ Open Research
  • European Respiratory Review
  • Breathe
  • ERS books online
  • ERS Bookshop

Help

  • Feedback

For authors

  • Instructions for authors
  • Submit a manuscript
  • ERS author centre

For readers

  • Alerts
  • Subjects
  • Podcasts
  • RSS

Subscriptions

  • Accessing the ERS publications

Contact us

European Respiratory Society
442 Glossop Road
Sheffield S10 2PX
United Kingdom
Tel: +44 114 2672860
Email: journals@ersnet.org

ISSN

Print ISSN:  0903-1936
Online ISSN: 1399-3003

Copyright © 2021 by the European Respiratory Society