Skip to main content

Main menu

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • COVID-19 submission information
    • Peer reviewer login
  • Alerts
  • Subscriptions
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

User menu

  • Log in
  • Subscribe
  • Contact Us
  • My Cart
  • Log out

Search

  • Advanced search
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

Login

European Respiratory Society

Advanced Search

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • COVID-19 submission information
    • Peer reviewer login
  • Alerts
  • Subscriptions

Multiple intracellular pathways for regulation of chloride secretion in cultured pig tracheal submucosal gland cells

AL Zhang, GM Roomans
European Respiratory Journal 1999 13: 571-576; DOI: 10.1183/09031936.99.13357199
AL Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GM Roomans
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Tracheal submucosal glands are of great relative importance in the secretion of chloride and water to the airway lumen. This study aimed to examine whether the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in cyclic adenosine monophosphate (cAMP) or Ca2+-activated Cl- secretion. Regulation of Cl- secretion in cell cultures derived from pig tracheal submucosal gland acini was investigated by X-ray microanalysis. With or without preincubation with CFTR antisense oligodeoxynucleotide (5 microM). A significant decrease in cellular Cl and K concentration was induced by 5 mM 8-bromo-adenosine 3': 5'-cyclic monophosphate (8-bromo-cAMP), 3 microM calcium ionophore ionomycin, 200 microM 5'-uridine triphosphate (UTP) and 200 microM 5'-adenosine triphosphate (ATP), respectively. The decrease in cellular Cl content was significantly inhibited by the Cl- channel blocker 5-nitro-2-(3-phenylpropyl-amino)-benzoic acid (NPPB; 50 microm). Preincubation of the cells with CFTR antisense oligodeoxynucleotide significantly inhibited the 8-bromo-cAMP-induced decrease in Cl, whereas CFTR sense oligodeoxynucleotide had no effect. The effects of ionomycin, ATP or UTP were not blocked by either CFTR antisense oligodeoxynucleotide or CFTR sense oligodeoxynueleotide. To measure the cytosolic free calcium concentration ([Ca2+]i) the cells grown on glass coverslips were loaded with fura-2 tetraoxymethylester (fura-2 AM; 5 microM). The [Ca2+]i was measured as the fluorescence ratio of emission (340/380 nm). Ionomycin (3 microM) caused a rapid increase in [Ca2+]i followed by a sustained plateau, but 8-bromo-cAMP had a more complex effect on [Ca2+]i. Exposure to ATP or UTP caused a rapid increase in [Ca2+]i followed by a decrease. In conclusion, cystic adenosine monophosphate and ionomycin induced Cl- secretion through different intracellular pathways. Adenosine triphosphate and uridine triphosphate also induced Cl- secretion probably with Ca as an intracellular messenger. The cystic fibrosis transmembrane conductance regulator is not involved in Cl- secretion activated by extracellular adenosine triphosphate and uridine triphosphate.

PreviousNext
Back to top
Vol 13 Issue 3 Table of Contents
  • Table of Contents
  • Index by author
Email

Thank you for your interest in spreading the word on European Respiratory Society .

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Multiple intracellular pathways for regulation of chloride secretion in cultured pig tracheal submucosal gland cells
(Your Name) has sent you a message from European Respiratory Society
(Your Name) thought you would like to see the European Respiratory Society web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Multiple intracellular pathways for regulation of chloride secretion in cultured pig tracheal submucosal gland cells
AL Zhang, GM Roomans
European Respiratory Journal Mar 1999, 13 (3) 571-576; DOI: 10.1183/09031936.99.13357199

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Multiple intracellular pathways for regulation of chloride secretion in cultured pig tracheal submucosal gland cells
AL Zhang, GM Roomans
European Respiratory Journal Mar 1999, 13 (3) 571-576; DOI: 10.1183/09031936.99.13357199
Reddit logo Technorati logo Twitter logo Connotea logo Facebook logo Mendeley logo
Full Text (PDF)

Jump To

  • Article
  • Info & Metrics
  • PDF
  • Tweet Widget
  • Facebook Like
  • Google Plus One

More in this TOC Section

  • Ambulatory management of secondary spontaneous pneumothorax
  • Systematic assessment of respiratory health in illness susceptible athletes
  • Identifying early PAH biomarkers in systemic sclerosis
Show more Original Articles

Related Articles

Navigate

  • Home
  • Current issue
  • Archive

About the ERJ

  • Journal information
  • Editorial board
  • Press
  • Permissions and reprints
  • Advertising

The European Respiratory Society

  • Society home
  • myERS
  • Privacy policy
  • Accessibility

ERS publications

  • European Respiratory Journal
  • ERJ Open Research
  • European Respiratory Review
  • Breathe
  • ERS books online
  • ERS Bookshop

Help

  • Feedback

For authors

  • Instructions for authors
  • Publication ethics and malpractice
  • Submit a manuscript

For readers

  • Alerts
  • Subjects
  • Podcasts
  • RSS

Subscriptions

  • Accessing the ERS publications

Contact us

European Respiratory Society
442 Glossop Road
Sheffield S10 2PX
United Kingdom
Tel: +44 114 2672860
Email: journals@ersnet.org

ISSN

Print ISSN:  0903-1936
Online ISSN: 1399-3003

Copyright © 2023 by the European Respiratory Society