Skip to main content

Main menu

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • Peer reviewer login
  • Alerts
  • Subscriptions
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

User menu

  • Log in
  • Subscribe
  • Contact Us
  • My Cart

Search

  • Advanced search
  • ERS Publications
    • European Respiratory Journal
    • ERJ Open Research
    • European Respiratory Review
    • Breathe
    • ERS Books
    • ERS publications home

Login

European Respiratory Society

Advanced Search

  • Home
  • Current issue
  • ERJ Early View
  • Past issues
  • ERS Guidelines
  • Authors/reviewers
    • Instructions for authors
    • Submit a manuscript
    • Open access
    • Peer reviewer login
  • Alerts
  • Subscriptions

Hyperinflation and respiratory muscle interaction

M Decramer
European Respiratory Journal 1997 10: 934-941; DOI: 10.1183/09031936.97.10040934
M Decramer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Hyperinflation clearly affects respiratory muscle interaction. It commonly increases the rib cage contribution to chest wall motion, whilst it reduces the abdominal contribution. This change is thought to result from the fact that hyperinflation severely reduces the mechanical advantage of the diaphragm, whilst it affects the mechanical advantage of the neck and rib cage muscles to a lesser extent. The mechanical disadvantage in the diaphragm induced by hyperinflation is presumably primarily the result of the length changes undergone by the diaphragm in acute hyperinflation. Changes in diaphragmatic geometry are generally considered to be less important in the reduction of the diaphragm's force-generating capacity. Further factors contributing to the mechanical disadvantage in the diaphragm include a reduction in the appositional component of diaphragmatic action (through reduction in the zone of apposition), and a reduction in the insertional component (through a shift in the alignment of the diaphragmatic fibres from axial to radial). In chronic hyperinflation, the diaphragm adapts to the chronically hyperinflated state. This adaptation to chronic foreshortening is similar to the adaptation occurring in the skeletal muscle. It is caused by a dropout of sarcomeres in series along the muscle fibres. It restores the force-generating capacity of the muscle, in part, but it reduces the capacity of the muscle to undergo length changes. The mechanical advantage of the parasternal intercostals and the scalenes is possibly less affected, because the length changes undergone by these muscles during hyperinflation are smaller. The factors determining the mechanical advantage of the parasternal intercostals are complex. Variables related to the mechanical advantage of the parasternal intercostals include: length changes; changes in angle between the parasternal intercostals and the sternum and between rib and sternum; and changes in mechanical arrangement among different parasternals. At present, it is difficult to develop an integrated view of these factors and of their change with hyperinflation. Finally, hyperinflation commonly results in recruitment of expiratory muscles. The functional significance of this expiratory muscle recruitment in patients is still debated.

PreviousNext
Back to top
Vol 10 Issue 4 Table of Contents
  • Table of Contents
  • Index by author
Email

Thank you for your interest in spreading the word on European Respiratory Society .

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Hyperinflation and respiratory muscle interaction
(Your Name) has sent you a message from European Respiratory Society
(Your Name) thought you would like to see the European Respiratory Society web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Hyperinflation and respiratory muscle interaction
M Decramer
European Respiratory Journal Apr 1997, 10 (4) 934-941; DOI: 10.1183/09031936.97.10040934

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Hyperinflation and respiratory muscle interaction
M Decramer
European Respiratory Journal Apr 1997, 10 (4) 934-941; DOI: 10.1183/09031936.97.10040934
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Full Text (PDF)

Jump To

  • Article
  • Info & Metrics
  • PDF
  • Tweet Widget
  • Facebook Like
  • Google Plus One

More in this TOC Section

  • Ambulatory management of secondary spontaneous pneumothorax
  • Systematic assessment of respiratory health in illness susceptible athletes
  • Identifying early PAH biomarkers in systemic sclerosis
Show more Original Articles

Related Articles

Navigate

  • Home
  • Current issue
  • Archive

About the ERJ

  • Journal information
  • Editorial board
  • Press
  • Permissions and reprints
  • Advertising

The European Respiratory Society

  • Society home
  • myERS
  • Privacy policy
  • Accessibility

ERS publications

  • European Respiratory Journal
  • ERJ Open Research
  • European Respiratory Review
  • Breathe
  • ERS books online
  • ERS Bookshop

Help

  • Feedback

For authors

  • Instructions for authors
  • Publication ethics and malpractice
  • Submit a manuscript

For readers

  • Alerts
  • Subjects
  • Podcasts
  • RSS

Subscriptions

  • Accessing the ERS publications

Contact us

European Respiratory Society
442 Glossop Road
Sheffield S10 2PX
United Kingdom
Tel: +44 114 2672860
Email: journals@ersnet.org

ISSN

Print ISSN:  0903-1936
Online ISSN: 1399-3003

Copyright © 2023 by the European Respiratory Society