Title: Reduced larger von Willebrand factor multimers at dawn in OSA plasmas reflect the severity of apnoeic episodes

Body: Plasma von Willebrand factor (VWF), produced in and released from vascular endothelial cells by various stimuli including hypoxia, induces platelet aggregation under high shear stress and plays dual pivotal roles in haemostasis and thrombosis within arterioles, which are regulated by the size of VWF multimers (VWFMs). Patients with obstructive sleep apnoea (OSA) have increased risk of thrombotic cardiovascular events, but the pathogenesis is unclear. We examined the relationship between VWF and OSA by measuring VWF antigen (VWF:Ag), VWFMs, VWF collagen binding activity (VWF:CB) and a disintegrin-like, metalloproteinase, and thrombospondin type 1 motifs 13. A total of 58 OSA patients were enrolled. Blood samples were collected before sleep, after sleep, and after one night of nasal continuous positive airway pressure therapy. Based on VWFM analysis, OSA patients were classified into three groups; consistently normal VWFM (group 1, n=29), increased high molecular weight (HMW)-VWFMs at 06:00 h (group 2, n=18), and decreased or absent HMW-VWFMs at 06:00 h (group 3, n=11). Patients in group 3 had significantly worse apnoea/hypopnoea index; VWF:CB followed a similar pattern. We observed a significant decrease in platelet count between 21:00 h and 06:00 h in OSA patients, potentially associated with reduced larger VWFM together with decreased VWF:Ag levels. Severe OSA may contribute to an arterial pro-thrombotic state.