European Respiratory Society Annual Congress 2012

Abstract Number: 2577

Publication Number: P243

Abstract Group: 4.1. Clinical physiology and Exercise

Keyword 1: Breath test **Keyword 2:** Physiology **Keyword 3:** Environment

Title: Hydrogen peroxide in exhaled air: A source of error, a paradox and its resolution

Mr. Stefan 20658 Peters stefan.peters@med.uni-muenchen.de ¹, Ms. Angelika 20659 Kronseder angelika.kronseder@med.uni-muenchen.de ¹, Dr. Stefan 20660 Karrasch stefan.karrasch@med.uni-muenchen.de MD ¹, Dr. Petra 20661 Neff petra.neff@de.bosch.com ², Dr. Matz 20662 Haaks matz.haaks@aero-laser.de ³, Dr. Rembert 20664 Koczulla koczulla@med.uni-marburg.de MD ⁴, Prof. Dr Dennis 20667 Nowak dennis.nowak@med.uni-muenchen.de MD ¹ and Dr. Rudolf 20673 Jörres rudolf.joerres@med.uni-muenchen.de ¹. ¹ Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, Munich, Germany ; ² Corporate Research - Applied Research Chemistry, Robert Bosch GmbH, Stuttgart, Germany ; ³ Aero-Laser, Aero-Laser GmbH, Garmisch-Partenkirchen, Germany and ⁴ Internal Medicine, Division for Pulmonary Diseases, Philipps-University, Marburg, Germany .

Body: Background: The concentration of hydrogen peroxide (H_2O_2) in exhaled air has been reported to be elevated in asthma and COPD, but the data are inconsistent and difficult to reproduce. Notably, a relevant concentration of H_2O_2 can be found in ambient air. Therefore, we examined the association between H_2O_2 in ambient and exhaled air. Methods: Exhaled breath condensate (EBC) of 12 COPD patients and 9 healthy subjects was collected with an inhalation filter (F; efficiency 81%) or without (nF). Ambient air condensate (AAC) was collected in parallel and all samples were analysed for H_2O_2 . Additionally, ambient H_2O_2 concentration was recorded by an analyser for atmospheric H_2O_2 . Results: H_2O_2 concentration in AAC (3.60±1.40µM, mean±SD) was higher (p<0.01) than in EBC (Table). It showed meteorological variations concordant with atmospheric measurements. In both groups studied, the inhalation filter caused a reduction of H_2O_2 values (p<0.01). Despite the comparatively low levels in exhaled air, analysis by means of a mathematical model revealed an endogenous H_2O_2 contribution which was more pronounced when using the inhalation filter.

median (interquartile range), μΜ	COPD	control
exhaled F	0.42 (0.13)	0.45 (0.22)
exhaled nF	0.78 (0.51)	0.75 (0.32)
endog. (mucosa conc. equivalent)	0.66 (1.90)	0.69 (3.40)

Conclusion: The paradox of low H₂O₂ values in exhaled air assessed by EBC dissolves when taking into

account the reconditioning of inhaled air containing H_2O_2 . This may partially explain the heterogeneity of study results and their limited reproducibility. Still, there seems to be endogenous H_2O_2 production but its valid determination requires inhalation filters. This suggests a reanalysis of studies from the literature.