European Respiratory Society Annual Congress 2012

Abstract Number: 4951

Publication Number: P2199

Abstract Group: 5.1. Airway Pharmacology and Treatment

Keyword 1: Monocyte / Macrophage Keyword 2: Cell biology Keyword 3: Genetics

Title: The correction of monocyte-derived neohepatocytes from alpha1 antitrypsin deficient patients

Dr. Gillian 30996 McNab g.l.mcnab.1@bham.ac.uk ¹ and Prof. Robert 30997 Stockley Rob.Stockley@uhb.nhs.uk MD ². ¹ Centre for Translational Inflammation, University of Birmingham, United Kingdom, B15 2WB and ² Lung Investigation Unit, Queen Elizabeth Hospital Birmingham, United Kingdom, B15 2WB .

Body: This study explores the culture of monocyte-derived neohepatocytes from PiZ alpha1 antitrypsin deficient (α, ATD) patients and homologous replacement using small DNA fragments (SDFs) to correct the Z defect. Monocytes from 6 patients were de-differentiated with MCSF and IL3 and then differentiated into neohepatocytes with FGF-4. Albumin, urea and α_1 AT were measured. SDF enclosing the normal sequence at the PiZ mutation site was generated from genomic DNA of a healthy volunteer. SDFs were transfected into neohepatocytes and cDNA checked for the M or Z message. No albumin was detected from monocytes. Neohepatocytes secreted 250±50 mg/dL albumin/72h. Monocytes secreted both urea (5±2 μ g/dL) and α_1 AT (272±42 μ g/ml) over 72h. Neohepatocytes secreted 103±30 μ g/dL urea and 311±34 μ g/ml α₁AT. Neohepatocytes produced PCR products from Z primers. M SDF treated neohepatocytes generated bands using M primers, indicating the generation of a corrected transcript. Neohepatocytes transfected with a monocyte transfection kit but no DNA control produced 163 \pm 42 μ g/ml α_{1} AT in 24h, whereas 20 μ g M SDF significantly increased secretion (173 ± 41µg/ml/24h, p=0.046, n=3). Using a hepatocyte transfection kit caused further increases in the amount of α_1AT released. Control transfected neohepatocytes produced 322μg/ml/24h α_1 AT and 20μg M SDF significantly increased secretion (590 ± 104μg/ml/24h, p=0.026, n=3). Moreover, 50 μ gM SDF caused more α_1 AT production (886 \pm 298 μ g/ml/24h). Neohepatocytes can be generated from α_1 ATD monocytes. The defective gene can be corrected and is associated with an increase in α_1 AT secretion. Development of this technique could be beneficial and protect both the liver and lungs.