The noninvasive diagnosis of pulmonary hypertension generally includes a physical examination, an electrocardiogram, a chest roentgenogram, a radionuclide angiography, and an echocardiography. These methods can discriminate mild from severe elevation in pressure, but lack sufficient sensitivity to be useful in the evaluation of short-term therapeutic interventions or in the monitoring of the clinical course of patients [1, 2]. Advances in echo-Doppler technology in the years since 1980 have made it possible to improve the estimation of pulmonary artery pressures (P_{pa}) and pulmonary vascular resistance (PVR) by the study of tricuspid regurgitation (TR) jets and pulmonary flow-velocity waves [3]. The echo-Doppler evaluation of pulmonary hypertension has since entered routine cardiological practice, but is still considered inferior to a right heart catheterization [4, 5]. This opinion may be based on an insufficient appreciation of the information content of the Doppler recordings.

Tricuspid regurgitation

The recording of TR jets by continuous wave Doppler echocardiography was first reported in 1984 by Yock and Popp [6] in a series of 62 patients with clinical signs of right heart failure. These authors applied an idea previously proposed by Skjærpe and Hatle [7], consisting of the calculation of a transtricuspid gradient (DP) from the maximal velocity (V) of TR jets using the simplified form of the Bernoulli equation: DP (mmHg) = 4\times V^2 (m\cdot s^{-1}) (fig. 1). Adding the transtricuspid gradient to mean right atrial pressure (estimated clinically from the jugular veins) yielded predictions of right ventricular systolic pressures that were extremely close to those obtained with catheterization, even if not studied simultaneously [6]. This method has been widely used in patients with valvular, myocardial and congenital heart disease, with reported correlation coefficients between Doppler and catheter measurements ranging 0.89–0.97 [8–10]. The prediction of systolic right ventricular pressure or pulmonary artery pressure (P_{pa}) has been shown to be accurate over a wide range of pressures [6, 8–10], and not affected by the level of cardiac output [9]. The interobserver variability of the TR maximal velocity has been found to be less than 3% [9]. However, whilst a TR signal can be recorded in 90% [6] to 100% [9] of patients with clinical signs of right heart failure, and is almost invariably present with a systolic P_{pa} higher than 50 mmHg [8, 9], the recovery rate may decrease to 72% in the absence of clinical signs of right heart failure [10]. In series of patients with chronic obstructive pulmonary disease (COPD), lower recovery rates of TR jets of 66% [11], or even 24% [12] have been reported. It is possible to improve these excessively low recovery rates by the use of saline contrast enhancement [13]. Doppler echocardiography can detect TR in 50% of normal subjects [14]. This characteristic has been exploited for the noninvasive investigation of pulmonary vascular reactivity to hypoxia in normal men [15].

Compared to right heart catheterization measurements, the standard error for the estimate of Doppler TR-derived pressure calculation ranges 5–9 mmHg, which is in contrast to the above mentioned very high correlation coefficients [6, 8, 9, 11, 13]. This has been explained by nonsimultaneous invasive measurements,
clinical evaluation instead of direct measurement of right atrial pressure, some unavoidable beam to flow angle, and uncertainty in the assignment of maximum velocity in the regurgitant signal [6]. In addition, the maximum transtricuspid pressure gradient may occur before peak right ventricular systolic pressure in the presence of a prominent V wave in the right arterial pressure [6]. Also, most studies have correlated Doppler estimates of systolic right ventricular pressure to systolic P_{pa}, whilst there may be a pressure gradient between the right ventricle and the pulmonary artery. This gradient is more or less positive in early systole, but becomes more or less negative at a variable stage of systolic ejection, depending on type and severity of pulmonary hypertension [16]. It may be added that the frequency response of fluid-filled pulmonary artery catheters is inadequate for the measurement of instantaneous pressures. Finally, it was recently shown that in patients with severe pulmonary hypertension, Doppler TR jet-derived prediction of peak systolic right ventricular pressure may underestimate high fidelity transducer-tipped catheter pressure by an average of 20% [17]. The authors attributed this surprising finding to the tricuspid orifice geometry assumption on which the use of the simplified form of the Bernoulli equation is based [17].

How should a Doppler TR jet-derived estimation of a peak systolic transtricuspid pressure gradient be used? This pressure gradient rises in proportion to systolic P_{pa}, and is therefore useful as an indication of the severity of pulmonary hypertension. However, it is not possible to calculate a mean P_{pa} from a systolic P_{pa}, because, at a given mean P_{pa} or pulmonary vascular resistance (PVR), pulse pressure varies with pulmonary arterial compliance and wave reflection depending on the type of pulmonary hypertension [18]. The peak systolic pressure is also of limited use in the evaluation of systolic right ventricular function. If afterload is defined as systolic ventricular wall tension, i.e., by extrapolation of Laplace’s law, the product of pressure by volume divided by wall thickness, the relevant pressure is in early systole, when volume is still close to its end-diastolic value [19]. If afterload is defined as the pulmonary arterial hydraulic load [19], the relevant pressure is the complete pressure wave which, together with the complete flow wave, can be analysed in the frequency domain for the calculation of the ratio of pulsatile pressure to pulsatile flow, or pulmonary vascular impedance [18]. Concerning contractility, for which the best possible index is maximal ventricular elastance (E_{max}), the ratio of pressure by volume around end-systole, the relevant pressure is end-systolic [19]. Some authors have estimated E_{max} by the ratio between peak systolic pressure and end-systolic volume [5], but the validity of this index of contractility is at best uncertain [19].

Pulmonary blood flow velocity

The application of a pulsed Doppler technique to record pulmonary artery flow velocity was reported in 1983 by Kitabatake et al. [20] in a series of 33 patients, of whom 16 had a mean P_{pa} higher than 20 mmHg. In the patients with a normal P_{pa}, ejection flow velocity reached a peak level at mid-systole, producing a dome-like contour, whilst in the patients with pulmonary hypertension, the time to peak flow velocity (acceleration time (AT)) was decreased, producing a triangular contour (fig. 2). A secondary

![Fig. 2. – Doppler pulmonary flow velocity curves in a patient without pulmonary hypertension (Type I) and in two patients with pulmonary hypertension (Types II and III). Type I: normal, dome-like contour with a maximum velocity in the middle of systole. Type II: triangular contour, with a sharp peak in early systole, and a decreased acceleration time. Type III: similar to Type II, but with a mid-systolic notching.](image-url)
slower rise was observed during deceleration in 10 patients, resulting in mid-systolic notching (fig. 2). A high correlation coefficient, around 0.9, was found between AT, or AT correlated for ejection time (ET), and mean P_{pa}.

Satisfactory Doppler recordings were obtained in 70% of patients referred to the catheterization laboratory. This proportion increased to 90% in patients with pulmonary hypertension. The study also showed a close correlation between pulmonic valve motion and pulmonary artery flow velocity pattern, but noted that mid-systolic notching was not always related to the severity of pulmonary hypertension, and could be intermittent [20].

Moderately good to excellent correlation coefficients, from 0.65–0.96, between AT alone or correlated for ET, pre-ejection time or heart rate and mean P_{pa} or PVR or their logarithms have been reported in many studies on patients with pulmonary hypertension of various severities and origins, but standard errors of the estimates have remained relatively high, up to 10 mmHg and sometimes more [10, 12, 20–28]. Furthermore, acute changes in P_{pa} induced by exercise, volume loading, oxygen or nifedipine administration, are only loosely correlated to inverse directional changes in AT [29]. Interobserver and intraobserver variabilities appear to be on average 9 and 7% respectively [27]. The recovery rate of pulmonary flow velocity curves ranges 81–98%, does not depend on the severity of pulmonary hypertension, and is not decreased in patients with COPD [10, 12, 20–28]. It is possible to attain a recovery rate of 100% in normal subjects [15].

What determines the shape of a pulmonary flow velocity curve? AT is not generally affected by tricuspid insufficiency, even at high levels of P_{pa} [10, 20, 24]. Severe right ventricular dysfunction prolongs AT [24]. Patients with an atrial septal defect and moderately increased P_{pa} due to an increased pulmonary blood flow have a longer AT than patients with the same P_{pa} in the context of valvular heart disease [24]. The same increase in P_{pa} induced by passive leg rising shortens AT in patients with pulmonary hypertension due to COPD, but increases AT in patients with a normal P_{pa} [30]. This is in keeping with the observation by Kitabatake et al. [20] on a patient with pulmonary hypertension and arrhythmia, in whom a mid-systolic deceleration in flow velocity occurred only with the largest stroke volumes [20]. That the shape of a flow velocity wave is not just determined by mean P_{pa} has been repeatedly suspected by several authors, who speculated on the effects of volume flow [23, 24], PVR [25], wave reflection [24], or pulmonary arterial elastance [24, 26].

To investigate the mechanisms of mid-systolic deceleration of pulmonary blood flow in pulmonary hypertension in dogs, Furuno et al. [32] compared the effects of various degrees of pulmonary hypertension induced either by proximal pulmonary artery constriction or embolization by 150 µm glass beads on pulmonary vascular impedance [32]. At a comparable severity of pulmonary hypertension, as assessed by mean P_{pa} and PVR, pulmonary arterial constriction was associated with a larger pulse pressure and a higher characteristic impedance taken as an index of pulmonary arterial elastance [characteristic impedance is the ratio between inertance and compliance of the proximal pulmonary arterial tree]. A mid-systolic deceleration of pulmonary blood flow could be identified in half of the dogs with pulmonary artery constriction, and this was demonstrated to be due.
to an earlier return of the backward flow wave (fig. 3). Pulmonary artery constriction was also associated with a shorter AT [32]. These findings are in keeping with earlier studies on pulsatile pulmonary haemodynamics, which established that the shape of arterial pressure and flow waves is determined by a dynamic interplay between resistance, elastance and wave reflection [18].

Echo-Doppler versus right heart catheterization

In clinical practice, right heart catheterization is almost always performed with fluid-filled thermodilution catheters. The inherent methodological limitation of this approach is that only mean pressures and mean flows can be measured. A thermodilution pulmonary blood flow determination necessarily covers several cardiac cycles, and the frequency response of fluid-filled catheters is inadequate for the measurement of instantaneous pressures. Thus, current methodology of invasive pulmonary haemodynamic studies neglects the natural pulsatility of the pulmonary circulation. In addition, these studies very often include the calculation of PVR to evaluate the severity of pulmonary hypertension and the effects of treatments. This is misleading for two reasons. Firstly, PVR is a flow-dependent variable, and therefore cannot be used to evaluate changes in pulmonary vascular tone at variable mean flow [33]. Secondly, PVR gives an incomplete description of the forces that oppose pulmonary arterial flow, that is pulmonary vascular impedance [34]. Thus, mean Ppa and PVR derived from a fluid-filled thermodilution catheter should not be taken as a gold standard for noninvasive beat-by-beat measurements.

What is the information content of a pulmonary flow velocity wave? The shape of flow velocity and flow volume waves is similar, but flow velocity cannot be equated with flow volume. Thus, the measurement cannot be used for the calculation of PVR, should this be needed. On the other hand, because AT is determined not only by mean Ppa and PVR, but also by pulmonary arterial elastance and wave reflection, it provides information about the hydraulic load imposed on the right ventricle.

Perspective

More studies are needed on the pulsatile haemodynamic correlates of pulmonary flow velocity in various types of pulmonary hypertension. Reports on the effects of physiological and pharmacological interventions have been, until now, surprisingly scarce. It is a reasonable speculation that echo-Doppler studies could help to explain why clinical signs of right ventricular failure are so variable in patients with the same severity of pulmonary hypertension as assessed by mean Ppa or PVR. Along the same line, the echo-Doppler approach should be added to routine right heart catheterization for an improved understanding of the effects of pulmonary vasodilators on right ventricular afterload. After a decade of sterile comparisons, it may be time to realize that the two methods do not compete, but complement each other.

References

