Hyperreactivity and ^{45}Ca movements in sensitized guinea-pig tracheal muscle

M. Perpiñá*, J. Cortijo**, E. Fornás***, M. Palau*, J.L. Ortiz**, E. Morcillo†

ABSTRACT: Responses to KCl and histamine and ^{45}Ca movements were studied in trachea from normal and actively sensitized guinea-pigs. Sensitized tracheas were hyperresponsive and hypersensitive to KCl and histamine. ^{45}Ca uptake experiments show that sensitized tracheal muscle behaves as normal except that the uptake of ^{45}Ca in low concentration (0.03 mM) Ca$^{2+}$ solution was higher and the number of binding sites for the high affinity component of ^{45}Ca uptake (as estimated by Scatchard-coordinate plot) was augmented. Additionally, in sensitized tracheal muscle, incubation in low (0.03 mM) Ca$^{2+}$ solution followed by La$^{3+}$ wash-out resulted in a greater amount of residual ^{45}Ca than in normal tissues. KCl, but not histamine, increased the La$^{3+}$ resistant ^{45}Ca content. This increase was greater in sensitized than in normal trachea. This demonstrates the existence of hyperreactivity and altered ^{45}Ca movements in sensitized tracheal muscle.

The aim of the present work was the search for differences between normal and sensitized guinea-pig tracheas in their ^{45}Ca movements, both basal (unstimulated) and after stimulation with two selected spasmogens, KCl and histamine.

Methods

Male guinea-pigs (325-375 g) were randomly allocated into two groups, nonsensitized and sensitized. The sensitization procedure was: on day 0 the animals were injected subcutaneously 0.25 ml of Freund's complete adjuvant plus 1.25 μg·g$^{-1}$ body weight of bovine serum albumin (BSA) dissolved in 0.25 ml saline; on day 2 and day 4 the animals received the same amount of Freund's complete adjuvant and BSA by the intramuscular route. The animals were used for experiments on days 21 to 25. The nonsensitized group was subjected to the same protocol but received only saline. The animals were killed by stunning and exsanguination and their tracheas removed and dissected free of extraneous tissues.

Tracheal strips were mounted for isometric recording of tension as outlined previously [15]. Only one cumulative concentration-response curve to KCl or histamine was constructed in each tracheal strip after 60 min equilibration under a resting tension of 1 g. Tension and effective concentration 50% (EC_{50}) were determined and expressed as g·mm$^{-2}$ and pD$_2$ values ($-\log_{10} EC_{50}$), respectively. The tension induced by a maximally
effective concentration of KCl or histamine was considered to be a measure of the responsiveness of the tissue while the pD2 values indicated the sensitivity of the preparations.

Tissues were prepared for 45Ca studies essentially as described by Weiss et al. [16]. Tracheal strips were dissected free of cartilage which interferes with 45Ca measurements [17, 18]. For 45Ca uptake experiments, tissues were equilibrated for 120 min in Tris buffered solution (composition in mM: NaCl 154.4; KCl 5.4; CaCl2 2.5; dextrose 11.0; and Tris-(hydroxymethyl) aminomethane 6.0; pH 7.3±0.1 maintained at 37°C and gassed with 100% O2.

After equilibration, tissues were placed for 30 min in Tris solutions containing either 2.5 mM CaCl2 (normal Ca2+ solution) or 0.03 mM CaCl2 (low Ca2+ solution) and then transferred to the same respective solution with added 45Ca (0.76 μCi ml-1); specific activity, 0.4 μCi ml-1) for a specified period of time. At the end, tissues were blotted on absorbent paper, dipped four times (2-4 s) in non-radioactive Tris solution, blotted again, and weighed. The tissues were then placed into scintillation vials and the 45Ca extracted overnight with 20 mM ethylene glycol tetra-acetic acid (EGTA). The extracts and 100 μl aliquots of the loading and La3+-containing solutions were prepared for scintillation counting to determine 45Ca content of the tissues and media, using Triton X-toluene scintillation fluid. The radioactivity was counted on an LKB 1219 Rackbeta. Tissue/medium ratios of 45Ca (μCi·g-1) and total 45Ca uptake (μmol·g-1 tissue wet weight) were calculated in a manner similar to that previously reported by Weiss et al. [16].

In some experiments, [14C]sucrose was used to determine the extracellular space. Tissues were incubated in a Tris solution (2.5 mM CaCl2) containing [14C]-sucrose (1 μCi·ml-1). The procedure to count radioactivity was similar to that used for 45Ca as indicated by Weiss et al. [16]. Scatchard-coordinate plots were constructed from the values of total Ca2+ uptake minus that Ca2+ present in the extracellular space ([14C]-sucrose space) as outlined by Weiss et al. [16]. The x-axis intercept estimates the number of binding sites (n) present per unit of tissue and the ratio of x-axis intercept/y-axis intercept estimates the dissociation constant (k).

The wash-out of 45Ca into a cold (0.5°C) isosmotic lanthanum-substituted solution (composition in mM: LaCl3 80.8 mM; dextrose 11.0 mM; and Tris 6.0 mM; pH adjusted to 6.8 with maleic acid) was also studied. After equilibration, tissues were exposed for 60 min to a Tris solution containing either 2.5 mM CaCl2 (normal Ca2+ solution) or 0.03 mM CaCl2 (low Ca2+ solution) with 45Ca (0.76 μCi ml-1; 0.4 μCi ml-1) added. Then, tissues were blotted, dipped in non-radioactive Tris solution and placed into successive solutions containing 2 ml of cold isosmotic La3+-substituted solution for the desired time intervals. The content of each vial was prepared for counting radioactivity. Tissues were also processed to measure radioactivity as in the uptake experiments. Data are expressed as desaturation curves i.e. percentage of 45Ca remaining in the tissue after each wash-out interval [16].

The number of linear components of desaturation curves were also determined by linear regression analysis. The best line fitting the points for the slowest of the components was determined for each curve. The slope of this line is the rate constant (k) from which the half-time (t1/2) was calculated (t1/2=0.693/k). The points on this line were then subtracted from points for the next slowest component and a new line was obtained with these points. The half-time for this component was calculated by the same procedure. A third linear component was analysed in a similar manner.

The residual 45Ca uptake was also measured according to Weiss et al. [16] but incorporating aspects of the technique used by Foster et al. [17] and Ræburn and Rooder [18]. In each experimental run, one strip of trachea served as control (basal uptake) and the remainder as test (drug-stimulated uptake) strips. After equilibration, tissues were incubated in Tris solution (2.5 mM Ca2+) with 45Ca (0.76 μCi ml-1; 0.4 μCi ml-1) added for 5 min. Then, either vehicle (control strips) or a certain concentration of the agonist (test strips) was added to the loading solution and left in contact for an additional period of time. This additional time of incubation was previously determined in tension experiments as the contact time necessary, for each concentration of KCl or histamine, to develop almost all the tension rise attainable by that concentration of the agonist [17]. At the end of the incubation period, the tissues underwent a 60 min wash-out into a cold isosmotic La3+-substituted solution (composition as in 45Ca efflux experiments). Tissues were prepared for counting as described previously.

Data are presented as mean±standard deviation (sn) and were analysed for statistical significance by the use of Student’s unpaired t-test.

Materials

Histamine and BSA were obtained from Sigma (St. Louis, M.O.) and Freund’s complete adjuvant from Difco (Detroit, MI). All other chemicals used were of reagent quality. Stock solutions of drugs were prepared in twice distilled water. 45Ca was supplied as an aqueous solution of CaCl2 by Amersham. The specific activity of the material was 25 mCi μg-1 Ca3+. [14C]-sucrose (specific activity, 1 μCi·ml-1) was supplied by Amersham.

Results

Tension experiments

Both KCl (1 to 100 mM) and histamine (0.1 μM to 1 mM) produced concentration-related contractions of tracheal strips from normal and sensitized guinea-pig. The concentration-response curves generated in sensitized trachea exhibited a left upward shift compared to those obtained in the nonsensitized group (fig. 1). This displacement translates into the differences between groups for the maximal effect (i.e. responsiveness) and effective concentration 50% (i.e. sensitivity), as presented in table 1.
Fig. 1. – Concentration-response curves for concentration of tracheal strips by KCl (△, △) and histamine (○, ○) in normal (open symbols) and sensitized (closed symbols) guinea-pigs. Point and bar are the mean value and so, respectively. The number of experiments for each group is shown in table 1.

Table 1. – Responsiveness (estimated by the maximal effect, E\text{max}) and sensitivity (shown as the pD\text{2} value i.e. -log_{10} EC\text{50}) of tracheal strips to KCl and histamine in normal and sensitized guinea-pigs

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Sensitized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>E\text{max} g:mm\text{-2}</td>
</tr>
<tr>
<td>KCl</td>
<td>6</td>
<td>0.66±0.07</td>
</tr>
<tr>
<td>Histamine</td>
<td>8</td>
<td>0.75±0.06</td>
</tr>
</tbody>
</table>

n: number of experiments; *: p<0.05 compared to normal.

\[\text{Ca}\text{ uptake studies}\]

Tracheal muscle from nonsensitized and sensitized guinea-pigs reached equilibrated levels of \[^{45}\text{Ca}\] uptake within 30 to 60 min in both normal (2.5 mM) and low (0.03 mM) Ca\text{2\+} solutions (fig. 2). The equilibrated \[^{45}\text{Ca}\] uptake was much greater in normal than in low Ca\text{2\+} solutions. There was no difference for \[^{45}\text{Ca}\] uptake in normal Ca\text{2\+} solution between nonsensitized and sensitized tissues. Conversely, the uptake of \[^{45}\text{Ca}\] in low Ca\text{2\+} solution was higher (p<0.05) in sensitized than in nonsensitized tissues (fig. 2).

Extracellular space, as determined by \[^{{14}\text{C}}\text{sucrose}\] tissue/medium ratios, was 0.420±0.029 ml·g\text{-1} (n=20) in normal and 0.410±0.016 ml·g\text{-1} (n=18) in sensitized tracheal strips.

Uptake of \[^{45}\text{Ca}\] by tracheal strips was determined after 60 min incubation in solutions with Ca\text{2\+} concentrations ranging from 0.01 to 5.00 mM. The Scatchard-coordinate plot constructed with these data (fig. 3) showed that Ca\text{2\+} uptake by guinea-pig trachealis muscle may be split into two components.

This provides the basis for a distinction between high and low affinity populations of binding sites. Thus, low Ca\text{2\+} solutions (0.01 to 0.30 mM) favour high affinity whilst high Ca\text{2\+} solutions (1.00 to 5.00 mM) favour low affinity Ca\text{2\+} uptake.

In addition, in the sensitized group, the number (n) of binding sites for the high affinity component were augmented with respect to the nonsensitized tissues while no difference between groups was observed for the calculated dissociation constant (k\text{d}). Conversely, n and k\text{d} values for the low affinity component were similar in nonsensitized and sensitized tissues.
Fig. 2. - Uptake of 45Ca in tracheal strips from normal (open symbols) and sensitized (closed symbols) guinea-pigs in either normal (2.5 mM) (○, ●) or low (0.03 mM), (△, ▲) Ca$^{2+}$ solution (see Methods for details). Points are mean values of 8 observations and vertical lines represent SEM.

Fig. 3. - Scatchard-coordinate plot of 45Ca uptake in tracheal strips from normal (○) and sensitized (●) guinea-pigs after 60 min incubation in Tris solutions containing the following extracellular Ca$^{2+}$ concentrations: 0.01, 0.03, 0.10, 0.30, 1.00, 2.50 and 5.00 mM. Points are the means of at least 5 experiments. For the high affinity component, the number of binding sites (x-axis intercept) were 0.76 in nonsensitized versus 0.93 in sensitized tissues and calculated k_D values (x-axis intercept/y-axis intercept) were 0.098 in nonsensitized versus 0.087 in sensitized tissues.
45 Ca washout studies

After 60 min incubation with 45Ca in normal (2.5 mM) or low (0.03 mM) Ca^{2+} solution, wash-out in substituted La^{3+} solution yielded the desaturation curves shown in figure 4. As can be observed, cold La^{3+} did not greatly interfere with 45Ca loss from the tissue in any of the experimental situations. However, 45Ca efflux from sensitized tissues incubated in low Ca^{2+} solution reached a higher steady level (18.1±2.1%) when compared to normal tissues (9.5±1.7%, p<0.05) as shown in the lower panel of figure 4.

The analysis of the linear components of the 45Ca desaturation curves yielded the following results expressed as the halftime in minutes for each component: 2.46, 12.30 and 230.0 in nonsensitized versus 2.31, 12.10 and 233.0 in sensitized tissues, both incubated in normal (2.5 mM) Ca^{2+} solutions; 3.35, 11.45 and 250.6 in nonsensitized versus 3.5 and 246.8 in sensitized tissues, both incubated in low (0.03 mM) Ca^{2+} solutions. All curves exhibited three linear components except that obtained in sensitized tissues incubated in low Ca^{2+} medium, which only had two components.

Residual 45Ca uptake studies

The 45Ca uptake, after 60 min wash-out into cold La^{3+}-substituted solution, was studied in the absence or presence of various concentrations of KCl and histamine (table 2). KCl (10 to 100 mM) caused a significant and concentration-dependent increase in the 45Ca-uptake. This increase was significantly greater in sensitized, compared to normal, tissues for KCl (30 to 100 mM). Histamine (1 to 100 µM) did not cause any significant change in 45Ca uptake by tracheal strips, in either normal or sensitized tissues.

Agonist-induced responses were at the same concentration, greater in sensitized than in normal tissues (fig. 1). Therefore, additional experiments were carried out to compare 45Ca uptake after single equi-effective concentrations of the agonists. Concentrations of the agonists were chosen to produce around 40% (KCl 14 mM, histamine 4 µM) or 80% (KCl 27 mM, histamine 50 µM) of the maximal response in nonsensitized tracheal strips and those concentrations producing approximately the same level of contraction in the sensitized strips were found to be KCl 6 and 12 mM, and histamine...
The number of experiments was 6 for each group. *: p<0.05 with respect to basal value; #: p<0.05 with respect to the corresponding value in the normal group; **: p<0.05 with respect to the preceding value in the same column.

Discussion

Tracheal strips from actively sensitized guinea-pigs were more responsive (i.e. greater maximal effect) and hypersensitive (i.e. smaller effective concentration 50%) to KCl and histamine. These results confirm previous findings from this laboratory [8, 9, 15] and are in agreement with those from other research groups [7, 10–12, 19]. Differences with other reports [20–22] may be related to methodological differences, mainly in the immunization procedure, and have been discussed previously [9, 15].

Therefore, 45Ca movements were then investigated in this model since an alteration in Ca2⁺ handling by sensitized airway smooth muscle has been suggested from previous studies, which found differences both in the response to agonists in Ca2⁺-free medium [15, 23] and in the efficacy of calcium antagonists [24–26], between naive and sensitized tissues.

In normal (nonsensitized) tracheal muscle, the time-course of 45Ca uptake, the amounts taken up in normal (2.5 mM) and low (0.03 mM) Ca2⁺ solutions and the distribution of Ca2⁺ binding into high and low affinity populations (as determined by the Scatchard-coordinate plot), are in accordance with results previously reported for tracheal muscle of the guinea-pig [27] and other animal species [16]. Sensitized guinea-pig trachea behaves in a manner similar to that of naive animals except that: i) the uptake of 45Ca in low (0.03 mM) Ca2⁺ solution was higher; and ii) the number of binding sites for the high affinity component of Ca2⁺ uptake was augmented.

In sensitized guinea-pig tracheal muscle, incubation in low (0.03 mM) Ca2⁺ solution followed by La3⁺ wash-out resulted in a greater amount of residual 45Ca compared to normal tissues. The analysis of the linear components of the desaturation curve under these experimental conditions showed only two components instead of the three usually observed in normal tissues in this and other studies [28].

Taken together, the results from the 45Ca uptake and efflux studies indicate that immunological sensitization produces a preferential enhancement of those Ca2⁺ movements related to the high affinity component i.e.
more high affinity Ca2+ is taken up and retained by sensitized tracheal muscle compared to normal tissues. The possible relevance of this finding has to be weighed considering that the high affinity Ca2+ presumably represents the cellular or membrane bound Ca2+ store which is primarily linked to the response to agonists [29].

As pointed out by GOODMAN et al. [27] and as can also be derived from results of the present study, the use of cold La3+ wash-out to estimate residual 45Ca uptake and its modification by agonists is less feasible in guinea-pig trachea than in other tissues. The values for basal (unstimulated) 45Ca uptake obtained in this study are lower than those found by FOSTER et al. [17, 30] and RAEBURN et al. [31] but close to those of RAEBURN and RODGER [18]. This may be related, as suggested by RAEBURN et al. [31], to the presence of Tris as buffer in the incubation medium.

Potassium chloride, but not histamine, produced a concentration-dependent increase in La3+ resistant 45Ca uptake by guinea-pig trachea. The results for normal tissues are in good agreement with those previously reported [18, 30–32]. The increase in 45Ca uptake by KCl is apparently due to Ca2+ entry through voltage-operated Ca2+ channels [18, 30]. This increase was significantly greater in sensitized than in normal guinea-pig tracheals. In contrast, RAEBURN et al. [31] found no significant difference between normal and sensitized preparations for KCl-stimulated tissues. However, this group used a different sensitization protocol which did not produce hyperreactivity [22]. The small but significantly greater Ca2+ entry following KCl stimulation may contribute to the lesser efficacy of verapamil in guinea-pig sensitized airway smooth muscle [24]. This greater 45Ca uptake in sensitized tissues was not found for equi-effective concentrations of KCl. On the other hand, tension development by histamine mainly involves intracellular Ca2+ release [32] whilst Ca2+ influx, if existing, lies under the level of detection by the lanthanum technique [32].

In summary, sensitized guinea-pig tracheal muscle shows hyperreactivity to histamine and KCl, and alterations in 45Ca movements consisting of an augmented uptake and retention of high affinity Ca2+ and a greater increase of La3+ resistant 45Ca uptake after KCl-stimulation. Although certain biochemical [33] and electrophysiological [34] abnormalities have been described in sensitized guinea-pig airways, the mechanism underlying these alterations remains to be determined. Although caution is needed in extrapolating findings from experimental models of asthma, further knowledge of Ca2+ handling by airway smooth muscle may prove decisive in the search for new anti-asthma drugs. This may be of importance given the lack of clinical effectiveness of calcium antagonists in asthma [35].

Acknowledgements: This work was supported in part by Grant No. 87/1018 from Fondo de Investigaciones Sanitarias de la Seguridad Social (Ministerio de Sanidad y Consumo) and Grants No. PB85-0228 and PB86-0428 from C.A.I.C.Y.T. (Ministerio de Educació y Ciencia).

References

Resumen: Nos hemos estudio, en la trachéa de cobayas normales y sensibilizadas activamente, las respuestas al KCl, a la histamina y los movimientos del 45Ca. Las trachéas sensibilizadas s'avèrent hyperréactives y hypersensibles au KCl et à la histamine. Les expériences de resorption de 45Ca montrent que le muscle trachéal sensibilisé se comporte comme un muscle normal, à l'exception d'une resorption plus élevée de 45Ca dans des solutions de Ca²⁺ à faible concentration (0.03 mM), et d'une augmentation du nombre de sites de liaison pour la resorption du composant de 45Ca à forte affinité (estimée par le Scatchard-coordinate plot). En outre, dans le muscle trachéal sensibilisé, une incubation dans une solutions à faible concentration de Ca²⁺ (0.03 mM), suivie par un lavage au La²⁺, entraîne la persistance d'une quantité plus grande de 45Ca résiduel que dans les tissus normaux. Le KCl, mais non l'histamine, augmente le contenu en calcium résistant à La²⁺. Cette augmentation est plus importante dans les trachéas sensibilisées que dans les trachéas normales. Ceci démontre l'existence d'une hyperactivité et de mouvements altérés du 45Ca dans le muscle trachéal sensitisé. Eur Respir J, 1991, 4, 450-457.