
DOI: 10.1183/09031936.00143208

From the authors:

I thank B.C. Creagh-Brown and C. Shee for their complimentary comments. Furthermore, I completely agree with the principles described in their letter regarding the use of noninvasive ventilation (NIV) in selected patients who have chosen to forego, or are not offered, endotracheal intubation and invasive mechanical ventilation. In fact, I had the privilege of co-authoring a recent statement published by the Society of Critical Care Medicine [1] regarding the use of noninvasive ventilation for patients with “do not intubate” orders that I think is entirely consistent with the comments by B.C. Creagh-Brown and C. Shee. In that statement, we argued that the use of NIV for patients with acute respiratory failure can be classified into three categories. 1) NIV as life support with no preset limitations on life-sustaining treatments. 2) NIV as life support when patients and families have decided to forego endotracheal intubation. 3) NIV as a “purely palliative” measure when patients and families have chosen to forego all life support and are receiving comfort measures only.

As pointed out by B.C. Creagh-Brown and C. Shee, there is compelling evidence that some patients in our “second category” (those for whom invasive ventilation is not desired or indicated but who do want life-sustaining treatments) will benefit from NIV, especially those patients with acute respiratory failure from chronic obstructive pulmonary disease or congestive heart failure.

As for those in the “third category” (patients for whom NIV is used purely for the palliation of symptoms), I also agree with B.C. Creagh-Brown and C. Shee that highly selected patients at the end-of-life may receive some palliative benefit from NIV, provided their clinicians are experienced with NIV. This is an important area in need of further research, but one in which some indirect evidence of benefit exists [1]. However, I suspect I may differ from B.C. Creagh-Brown and C. Shee with regard to my area of greatest concern regarding NIV in this purely palliative setting. In my clinical experience, I see many more patients at the end-of-life exposed to NIV that is unlikely to provide any benefit than for whom this potentially beneficial therapy is withheld.

Perhaps B.C. Creagh-Brown, C. Shee and I agree that both of these concerns about the misapplication of noninvasive ventilation are problematic and we should work to limit them both.

J.R. Curtis
Division of Pulmonary and Critical Care, University of Washington, Seattle, WA, USA.

STATEMENT OF INTEREST
None declared.

REFERENCES

DOI: 10.1183/09031936.00149308

No effects of EPHX1 polymorphisms on the level or change of FEV1 in the general population

To the Editors:

CHAPPELL et al. [1] recently found that several single nucleotide polymorphisms (SNPs) in the glutamate cysteine ligase (catalytic subunit; GCLC) and epoxide hydrolase 1 (EPHX1) do not associate with the presence or severity of chronic obstructive pulmonary disease (COPD). We have previously shown in two independent population-based cohorts that the functional polymorphism rs17883901 and the trinucleotide GAG repeat in GCLC form unique genotype combinations that are associated with lower lung function in interaction with smoking [2]. CHAPPELL et al. [1] did not study the latter variation in GCLC, nor the interaction between SNPs and smoking in relation to COPD severity, which is of special interest given the in vivo role of GCLC. They additionally studied SNPs in EPHX1, including nonsynonymous SNPs (nsSNPs) Tyr113His and His139Arg that previously provided both positive and negative associations with COPD across studies and races [1, 3–7]. We aimed to extend these findings by showing the effects of EPHX1 SNPs on the level and change of forced expiratory volume in one second (FEV1) in the general population, and additionally investigated whether EPHX1 SNPs smoking interactions are associated with both outcomes, as was the case with GCLC.

We genotyped five SNPs in EPHX1 (three SNPs tagging the 5 kb promoter region: rs3753658, rs10753410 and rs2854450; and two nsSNPs: rs1051740 (Tyr113His) and rs2234922...
Since EPHX1 is a phase II detoxification enzyme and nsSNPs in EPHX1 are functional [10], these were tested statistically with an interaction term, i.e. pack-ys × genotype/genotype combination/haplotype (defined as: slow (His113-His139+His113-Arg139 pooled); normal (Tyr113-His139); and fast (Tyr113-Arg139)). Interaction analysis of haplotype or genotype combinations contained two dummy variables and haplotype or genotype combinations were compared with each other.

The study provided 80% power for detecting 158 mL difference in FEV1 level and 7 mL-yr⁻¹ in FEV1 change for the lowest prevalent SNP (i.e. rs10753410) or haplotype in an additive or dominant model (\(\alpha=0.05 \), tested two-sided).

In our study, all EPHX1 SNPs were noncorrelated (\(r^2<0.05 \) for any SNP pair). Both FEV1 level and FEV1 change were not significantly associated with any of the SNPs in any model (table 3) nor were they different between slow, normal and fast combinations of EPHX1 genotypes. Four prevalent haplotypes were observed within the promoter (frequencies 55.2, 19.8, 13.3% and 11.5%) and coding region (slow: 27.8% (21.9 + 5.9); normal: 56.8%; fast: 15.4%), and none were significantly associated with FEV1 level or change.

We observed no significant interactions between pack-ys and nsSNPs or their combinations for either level or change in FEV1, nor was there a significant interaction with EPHX1 haplotypes and FEV1 level. The normal haplotype interacted with pack-ys, providing 0.5±0.2 mL-yr⁻¹ less FEV1 decline per pack-yr (\(p=0.01 \)) than the slow haplotypes pool in a dominant model (\(p>0.31 \) for recessive or additive model).

We found no effect of genetic variations in EPHX1 on the level or change of FEV1 in the general population. Furthermore, there was no significant interaction between functional nsSNPs and pack-ys in either outcome studied. Given the high number of tests performed (\(n=108 \)), the single significant association of the EPHX1 haplotype with FEV1 decline in interaction with smoking may be a spurious observation, and this needs replication.

Our observations support and extend the previously reported negative results of Chaipell et al. [1]. Since a lower forced

Data are presented as n (%), median (range) or mean±SD; unless otherwise stated. HWE: Hardy Weinberg equilibrium. a: for 1 degree of freedom Chi-squared test comparing the observed genotypes distribution with the expected as derived from the allele frequencies; b: Tyr113His and His139Arg genotype combinations defined as previously described [1, 5, 6].
expiratory volume in one second level and an accelerated forced expiratory volume in one second decline are both important indices of chronic obstructive pulmonary disease, epoxide hydrolase 1 does not likely play a role in the development of chronic obstructive pulmonary disease in Caucasians.

M. Siedlinski*, D.S. Postma#, H.A. Smit and H.M. Boezen*
*Depts of Epidemiology and #Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, and "Centre for Prevention and Health Services Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.

STATEMENT OF INTEREST
None declared.

ACKNOWLEDGEMENTS
The current authors would like to thank the epidemiologists and fieldworkers of the Municipal Health Services in Doetinchem (the Netherlands) for their important contribution to the data collection of the Doetinchem Study as well as J. Seidel, M. Verschuren and B. Bueno-de Mesquita (National Institute of Public Health in Bilthoven; the Netherlands) for conducting the study and A. Blokstra and P. Vissink (Centre for Prevention and Health Services Research, National Institute for Public Health and the Environment, Bilthoven, the Netherlands) for the logistic and data management. Last but not least, the present authors thank the participants of the Doetinchem study for their loyal participation every 5 yrs. The current authors thank the staff of the genotyping unit of the Centre for Medical Biomics (University Medical Center Groningen, Groningen, the Netherlands), particularly E. Oosterom, M. Bruinenberg and M. Platteel for their help in genotyping process.

REFERENCES
Pulmonary hypertension therapy and COPD: still many questions to be answered

To the Editors:

After great development in the knowledge of pulmonary arterial hypertension (PAH) during the last decades, there is now an increasing interest in the pathophysiology of other forms of pulmonary hypertension, such as chronic obstructive pulmonary disease (COPD). The results obtained in the study by Stolz et al. [1] have shown that for an average COPD Global Initiative for Chronic Obstructive Lung Disease stage III-IV population, the use of bosentan is not related to a significant improvement in exercise capacity and is associated with worsening of ventilation-perfusion mismatch. Although it is the first randomised study to address the use of bosentan, a proven PAH specific therapy, in the setting of COPD, the study design may lead to misinterpretation of the results. The study was not designed to treat COPD associated pulmonary hypertension. Furthermore, the absence of invasive measurements did not allow a proper subgroup analysis that could provide further support for the use of specific PAH therapy in the treatment of “disproportional” pulmonary hypertension associated with COPD. It is well known that most patients who present with pulmonary hypertension in the setting of COPD and other diseases actually have other associated causes for pulmonary hypertension development rather than an idiopathic PAH-like disease [2, 3], for instance, frequently presenting with some degree of left ventricle dysfunction. Since the study did not perform invasive haemodynamic assessment of the COPD patients, no assumption about a possible presence of post-capillary impairment, a situation in which bosentan has shown no effect so far [4], could be made.

Another matter of debate is the use of an echocardiogram to assess the presence of pulmonary hypertension in patients with severe COPD, since the technical difficulties in this specific clinical presentation have shown to impair the accuracy of this methodology.

In summary, we believe the authors have addressed an important question, but due to the chosen study design we remain with more questions than answers about the use of specific pulmonary arterial hypertension therapy in the setting of chronic obstructive pulmonary disease.

C. Jardim and R. Souza
Pulmonary Division, Heart Institute, University of São Paulo, São Paulo, Brazil.

STATEMENT OF INTEREST
None declared.

REFERENCES