Metal toxicity and the respiratory tract

B. Nemery

ABSTRACT: The type of lung disease caused by metal compounds depends on the nature of the offending agent, its physicochemical form, the dose, exposure conditions and host factors. The fumes or gaseous forms of several metals, e.g. cadmium (Cd), manganese (Mn), mercury (Hg), nickel carbonyl (Ni(CO)4), zinc chloride (ZnCl2), vanadium pentoxide (V2O5), may lead to acute chemical pneumonitis and pulmonary oedema or to acute tracheobronchitis. Metal fume fever, which may follow the inhalation of metal fumes e.g. zinc (Zn), copper (Cu) and many others, is a poorly understood influenza-like reaction, accompanied by an acute self-limiting neutrophil alveolitis. Chronic obstructive lung disease may result from occupational exposure to mineral dusts, including probably some metallic dusts, or from jobs involving the working of metal compounds, such as welding. Exposure to cadmium may lead to emphysema. Bronchial asthma may be caused by complex platinum salts, nickel, chromium or cobalt, presumably on the basis of allergic sensitization. The cause of asthma in aluminium workers is unknown. It is remarkable that asthma induced by nickel (Ni) or chromium (Cr) is apparently infrequent, considering their potency and frequent involvement as dermal sensitizers. Metallic dusts deposited in the lung may give rise to pulmonary fibrosis and functional impairment, depending on the fibrogenic potential of the agent and on poorly understood host factors. Inhalation of iron compounds causes siderosis, a pneumoconiosis with little or no fibrosis. Hard metal lung disease is a fibrosis characterized by desquamative and giant cell interstitial pneumonitis and is probably caused by cobalt, since a similar disease has been observed in workers exposed to cobalt in the absence of tungsten carbide. Chronic beryllium disease is a fibrosis with sarcoid-like epithelioid granulomas and is presumably due to a cell-mediated immune response to beryllium. Such a mechanism may be responsible for the pulmonary fibrosis occasionally found in subjects exposed to other metals e.g. aluminium (Al), titanium (Ti), rare earths. The proportion of lung cancer attributable to occupation is around 15%, with exposure to metals being frequently incriminated. Underground mining of e.g. uranium or iron is associated with a high incidence of lung cancer, as a result of exposure to radon. At least some forms of arsenic, chromium and nickel are well established lung carcinogens in humans. There is also evidence for increased lung cancer mortality in cadmium workers and in iron or steel workers.

For centuries metals have been known to be capable of causing human diseases, including pulmonary disease [1-8]. Elements may be defined as metals on the basis of their physical or chemical properties, but these definitions do not allow a sharp distinction to be made between metals and non-metals, because a number of elements, e.g. arsenic (As), bismuth (Bi), germanium (Ge), antimony (Sb), selenium (Se) and tellurium (Te), often called metalloids, share properties of both. From a toxicological viewpoint, a metal can be defined as "an element which under biologically significant conditions may react by losing one or more electrons to form cations" [9].

For the purposes of this review we may consider that metal-induced lung diseases are those lung disorders caused by mineral compounds other than carbon and silicon. This review will, therefore, not deal with coal workers pneumoconiosis, silicosis (caused by crystalline free silica or SiO2), asbestos-related disease (caused by some fibrous silicates) or pneumoconioses caused by other silicates such as talc, mica, kaolin etc., although silicates are associated with various cations including aluminium (Al), magnesium (Mg) or iron (Fe). These "classical" pneumoconioses constitute the majority of lung diseases due to mineral dusts and they have been extensively studied and reviewed.

In contrast, lung diseases caused by mineral compounds other than carbon or silicon probably concern fewer individuals, who often work in small industries with generally poor characterization of exposure. Consequently, lung disorders caused by metals have been less well studied and this may pose problems for occupational
physicians who need to prevent such disorders and for pulmonary physicians who have to diagnose and treat them.

The present review focuses on human data, rather than on information obtained from animal or in vitro experimentation. Information which is available in standard texts [6–8] has been taken as such, whereas more recent acquisitions are emphasized and referred to more specifically. As usual, studies showing disease have been given more attention than “negative” studies. This survey will not consider routes of exposure other than inhalation, although the lungs may be affected via the blood by metal containing drugs or chemicals, e.g. gold salts.

General toxicity of metals [9]

People are rarely exposed to the pure metallic form (zero oxidation state) of metals or metalloids, but more usually to oxides (or other binary metal compounds, such as sulphides, halides, hydrides, carbides, etc.) or to multielement compounds, mainly salts. Metals, most notably transition metals, can also form co-ordination complexes with various ligands e.g. ammonia (NH₃), carbon monoxide (CO), cyanogen (CN), organic nitrogen or sulphur molecules. Some metals may also form organometallic compounds in which the metal is bound to the carbon atom of an organic group. The chemical form of a metal, also called metal speciation, and the resulting physicochemical properties have important consequences in terms of toxicokinetics and biological effects.

Thus, the biological availability and absorption of metals will be greatly influenced by their solubility in water and lipids, but more importantly by their actual solubility in biological fluids, which contain a variety of organic ligands. For instance, the more insoluble the metal compound deposited in the airways, the more likely it will be cleared by the mucociliary escalator. Conversely, soluble salts will readily dissociate, thus facilitating their transport as metal ions into lung cells or into the blood circulation.

The strong attraction between metal ions and organic ligands situated within tissue molecules results in the binding of the metal ion to those molecules. This underlies a number of the biological effects and toxic actions of metals:
1) Some metals e.g. iron (Fe), copper (Cu), manganese (Mn), cobalt (Co), zinc (Zn), chromium (Cr) are essential as coenzymes for many enzymes. Dysfunctions in these enzymatic processes may, therefore, result from deficiency states, but also from overwhelming by very high doses of the essential metal or through substitution and mimicry of essential ions by inappropriate compounds.
2) The transport and accumulation of metals is often the result of their ability to interact with ligands. Transferrin, ferritin, albumin and ceruloplasmin are the main transport or storage proteins for Fe and Cu and their abundance probably constitutes a safeguard against the toxicity of free iron and copper ions [10, 11]. Cadmium and other metals bind to metallothionein, a low-molecular weight protein rich in sulphhydril (SH) groups. This process also plays a role in the defence against cadmium, but it eventually leads to the retention and progressive accumulation of cadmium in various tissues, including probably the pulmonary tissue [12].
3) The interaction of metals with functional groups on macromolecules is an important mechanism for their toxicity and their carcinogenicity [13, 14]. Thus, several metal ions react avidly with free SH groups, thereby possibly inhibiting active centres of enzymes, coenzymes or membrane bound receptors. Direct interaction of metals with deoxyribonucleic acid (DNA) is one of the possible mechanisms for metal carcinogenesis (as well as for the chemotherapeutic effects of some metal complexes).
4) Another toxicologically relevant consequence of metal binding to proteins is the possible acquisition of antigenicity. Thus platinum, chromium, nickel and cobalt are sensitizers probably by mechanisms similar to those of other reactive organic molecules of low molecular weight which may function as hapten.

The biological activity and toxicity of some metals is also greatly influenced by their ability to change their oxidation state by oxidation (loss of electrons) and reduction (gain of electrons). Transition metals are electronically stable in more than one oxidation state. As a result of this property, transition metals play important roles in catalysing biological oxidation reactions. Of the transition metals, iron and to a lesser extent copper have been extensively studied because of their implication in many pulmonary and non-pulmonary disease processes by virtue of their ability to enhance the production of toxic free-radical species of oxygen [10, 11, 15]. In pulmonary toxicology, free-radical oxygen toxicity, which seems always to involve metal catalysts [16, 17], is considered to be a mechanism for the effects of hyperoxia [18], paraquat [19], nitrofurantoin [20] and asbestos [22]. However, inhaled metals have so far received rather less attention in this respect.

Pulmonary disorders due to metal exposure

General remarks

Before discussing the various lung disorders caused by metals it is worth emphasizing some important points:
1. The respiratory system is not necessarily the only, or the principal, target for the toxicity of metal compounds, even when their entry to the body is by inhalation. Thus, the chronic inhalation of lead, mercury or manganese may lead to systemic effects, such as neurological damage, without leading to serious respiratory damage. Other metals, such as cadmium, are capable of causing both lung and kidney alterations, probably depending in part upon the route of exposure. It is, therefore, important to be aware of possible extra-pulmonary manifestations in metal toxicology.

On the other hand, from a scientific point of view, non-toxicity in the lung may be toxicologically as
Inhalation of other metallic compounds can also cause acute pulmonary damage. Past literature [7], and recent reports of accidental and non-accidental exposures, demonstrate that body metals are capable of causing chemical pneumonitis or acute airway irritation. Cases of adult respiratory distress syndrome have recently been reported in military or civilian personnel accidentally exposed to smoke bombs which contain zinc chloride (ZnCl₂) [40, 41], Antimony trichloride (SbCl₃) and pentachloride (SbCl₅) [7], Zirconium tetrachloride (ZrCl₄) [7], titanium tetrachloride (TiCl₄) [42] and uranium hexafluoride (UF₆) [43] may also lead to inhalation injury (presumably as a result of damage by the halide ion, rather than by the metal ion). Lithium hydride (LiH) and phosphine (PH₃) have also been reported to cause pulmonary oedema [7].

It is worth mentioning that the inhalation of the hydride forms of arsenic (arsine, AsH₃) or antimony (stibine, SbH₃) can also be lethal as a result of fulminant
<table>
<thead>
<tr>
<th>Metals</th>
<th>Exposures and uses*</th>
<th>Acute toxicity</th>
<th>Airways***†</th>
<th>Lung parenchyma***</th>
<th>Lung cancer†***</th>
<th>Extra-pulmonary toxicity††</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>Bauxite, cryolite, electrical engineering, transport & building industry, packaging, abrasives</td>
<td></td>
<td>Potroom asthma, bronchial hyperreactivity, (fluorides?, stone salts), COLD</td>
<td>Fibrosis (rare), (aluminosis), [granulomatous fibrosis], [alveolar proteinosis]</td>
<td>CNS</td>
<td>Pulmonary disease rare considering extensive use</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>Alloys (with Sn, Pb, Cu), chemical & textile industry, pigments, ceramics, glass</td>
<td>Pneumonitis (SbCl₅, SbCl₃), haemolysis (SbH₃)</td>
<td>Benign pneumoconiosis, (antimoniosis)</td>
<td>Possible</td>
<td>Heart</td>
<td>Often concomitantly exposed to As</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>Smelting of Cu, Pb, gold (Au), Zn, Co, glass, pigments, tanning, pesticides, alloys</td>
<td>Metal fume fever, haemolysis (AsH₃)</td>
<td>Nasal septum perforation</td>
<td>Definite</td>
<td>Skin, PNS, C-V system, blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>Alloys, paints, glass, ceramics</td>
<td></td>
<td></td>
<td>Benign pneumoconiosis, (baritis)</td>
<td></td>
<td>Heart</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>Alloys (with Cu), ceramics, electronics, nuclear, space, aircraft, dental technicians, metal reclaiming</td>
<td>Pneumonitis, metal fume fever</td>
<td>Granulomatous fibrosis, (chronic beryllium disease, berylliosis)</td>
<td>Suspect</td>
<td>Skin</td>
<td>Cell-mediated immune response, LTT in BAL lymphocytes</td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>In association with Zn & Pb alloys, electroplating, batteries, pigments, plastics, welding electrodes & silver solders, cigarettes</td>
<td>Pneumonitis, metal fume fever</td>
<td>COLD</td>
<td>Emphysema, (fibrosis in animals)</td>
<td>Suspect</td>
<td>Kidney</td>
<td>Cumulative metal (in man & environment)</td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>Alloys (stainless steel), chrome plating, pigments, refractory bricks, tanning, welding</td>
<td>Allergic asthma (rare?) nasal septum perforation</td>
<td>Definite (CrVI)</td>
<td></td>
<td></td>
<td>Contact dermatitis (frequent)</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>Alloys, hard metal (with WC), diamond polishing, magnets, pigments, catalysts, animal feed</td>
<td>Pneumonitis, metal fume fever</td>
<td>Allergic asthma, COLD</td>
<td>Fibrosing alveolitis, ("hard metal lung disease", "cobalt lung")</td>
<td>Possible</td>
<td>Heart, contact dermatitis</td>
<td>Giant cells in BAL</td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposures and uses*</td>
<td>Acute toxicity</td>
<td>Airways**†</td>
<td>Lung parenchyma***</td>
<td>Lung cancer***</td>
<td>Extra-pulmonary toxicity††</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Copper Cu</td>
<td>Electrical equipment, alloys (brass=Cu+Zn, bronze=Cu+Sn), pesticides, pigments</td>
<td>Metal fume fever</td>
<td>"Vineyard sprayers' lung"</td>
<td>Skin</td>
<td>Cu smelthers: As, SO₂</td>
<td>Gold refining: Hg</td>
<td></td>
</tr>
<tr>
<td>Gold Au</td>
<td>Jewellery, therapeutic</td>
<td>Metal fume fever</td>
<td>(Pneumonitis with gold salt therapy)</td>
<td>Skin</td>
<td>Concomitant SiO₂, asbestos, catalysis of Fenton reaction (oxygen free radicals)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron Fe</td>
<td>Mining, steel</td>
<td>Metal fume fever</td>
<td>COLD</td>
<td>Benign pneumoconiosis, (siderosis)</td>
<td>Iron ore mines (radon?), foundries (PAH ?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanthanons (rare earths) Cerium Ce,</td>
<td>Photogravure, glass</td>
<td>Metal fume fever</td>
<td>Fibrosis, (rare earth pneumoconiosis, cerium pneumoconiosis)</td>
<td>G-I tract, CNS, PNS, kidney, blood</td>
<td>Contamination with Cd, environmental concern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Pb</td>
<td>Lead smelting, alloys, batteries, pigments, paints, welding, petrol (alkyllead)</td>
<td>Metal fume fever</td>
<td>Pneumonitis (LiH)</td>
<td>CNS</td>
<td>Methylocyclopentadienyl manganese tricarbonyl (MMT) lung damage in animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium Li</td>
<td>Alloys, ceramics, electronics, catalysts</td>
<td>Metal fume fever</td>
<td>Pneumonitis, metal fume fever</td>
<td>CNS</td>
<td>Definite (mainly low solubility comp.), also nasal cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium Mg</td>
<td>Alloys</td>
<td>Metal fume fever</td>
<td>Pneumonitis, metal fume fever</td>
<td>CNS, kidney, contact dermatitis</td>
<td>Saturation of air with Hg rapidly achieved, environmental concern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese Mn</td>
<td>Steel, alloys, batteries, pigments, welding, chemical industry, metal slags (fertilizer)</td>
<td>Metal fume fever</td>
<td>Pneumonitis, metal fume fever</td>
<td>Contact dermatitis</td>
<td>Strong sensitizer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury Hg</td>
<td>Chlor-alkali industry, electrical, paints, measuring, pesticides, drugs, dentists, gold & silver refining</td>
<td>Metal fume fever</td>
<td>Pneumonitis, metal fume fever</td>
<td>Contact dermatitis</td>
<td>Anaphylactic shock following treatment with cisplatinum drug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel Ni</td>
<td>Alloys, nickel plating, coins, batteries, electronics, catalysts, cheap jewellery</td>
<td>Metal fume fever, pneumonitis [Ni(CO)₂]</td>
<td>Allergic asthma (rare)</td>
<td>Allergic asthma (common halide salts)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum Pt</td>
<td>Catalyst, photography, jewellery, chemotherapeutic agent</td>
<td>Metal fume fever</td>
<td>Allergic rhinitis and asthma</td>
<td>Contact dermatitis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.3

<table>
<thead>
<tr>
<th>Exposures and uses</th>
<th>Acute toxicity</th>
<th>Airways**†</th>
<th>Lung parenchyma***</th>
<th>Lung cancer***</th>
<th>Extra-pulmonary toxicity††</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osmium Os</td>
<td>Electron microscopy</td>
<td>Bronchitis, pneumonitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium Se</td>
<td>Byproduct of Cu refining, alloys, pigments, electronics, rubber, glass</td>
<td>Pneumonitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Ag</td>
<td>Alloys, soldering, photography, catalyst, jewellery</td>
<td>Metal fume fever</td>
<td>Benign pneumoconiosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin Sn</td>
<td>Tin plating, alloys, welding</td>
<td>Pneumonitis (TiCl_4) COLD?</td>
<td></td>
<td></td>
<td>[granulomatous pneumonitis]</td>
<td></td>
</tr>
<tr>
<td>Titanium Ti</td>
<td>Alloys, white pigment (TiO_2)</td>
<td></td>
<td>Probably not directly involved in hard metal lung disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tungsten W</td>
<td>Hard metal (WC+Co+other metals), cutting, drilling, polishing tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium U</td>
<td>Nuclear fuel</td>
<td>Pneumonitis (UF_6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium V</td>
<td>Steel, alloys, catalyst, pigments, present in fuel ash & metal slags</td>
<td></td>
<td>Tracheobronchitis, (boilermaker's bronchitis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc Zn</td>
<td>Alloys, brass, galvanizing, pigments, pesticides, ZnCl_2 (smoke bombs)</td>
<td></td>
<td>Metal fume fever, pneumonitis (ZnCl_2)</td>
<td>[Asthma? (galvanized steel welding)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium Zr</td>
<td>Alloys, nuclear, industry, pigments, catalysts, abrasives</td>
<td>Pneumonitis (ZrCl_2)</td>
<td></td>
<td>Benign pneumoconiosis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This summary is compiled from general sources [3–7] and intended only for use as a quick reference. Not all species of a metal cause the indicated disorder; the reader is referred to the text and original references for a complete description of exposure conditions and diseases. Metals not indicated in the table have not been associated with respiratory disease in humans. *: only typical or noteworthy uses are indicated; **: in general, chronic excessive exposure to mineral dust may lead to industrial bronchitis and possibly chronic obstructive lung disease (COLD); †: high temperature treatments of metals during refining, smelting, cutting or welding may lead to exposure to toxic gases and/or carcinogenic organic compounds; ***: underground mining of metal ores may lead to exposure to free silica and/or radon daughters; ††: only some selected target organs are indicated, particularly when relevant to chronic exposure by inhalation. C-V system: cardio-vascular system; G-I tract: gastro-intestinal tract; PNS: peripheral nervous system; CNS: central nervous system; LTT: lymphocyte transformation test; BAL: bronchoalveolar lavage. Diseases in square brackets [] concern isolated case reports.
haemolysis, which may sometimes manifest itself initially as dyspnoea.

Chemical pneumonitis has often been said not to lead to sequelae, however, this is certainly not a rule and in several case reports various chronic pulmonary manifestations, such as fibrosis, bronchial lesions or airway hyperreactivity were shown to follow the acute episode [35, 37, 38, 42-44].

Acute tracheobronchitis with persisting bronchial hyperreactivity [45] can be caused by exposure to vanadium pentoxide (V₂O₅), a significant risk associated with the cleaning of oil tanks ("boilermaker's bronchitis") [46, 47]. Exposure to chromic acid during chrome-plating leads to upper airway lesions, particularly nasal septal ulceration and perforation, which, in a recent study, was found in an astonishing two thirds of subjects exposed to moderately high peak levels of Cr [48].

Metal fume fever. A more benign condition following exposure to high concentrations of metal fumes, particularly but not exclusively zinc oxide, is metal fume fever [49, 50]. This condition, of which there are several synonyms [7], is an influenza-like or malaria-like reaction consisting of fever, chills and malaise with relatively mild respiratory symptoms, and classically little or no X-ray or functional abnormalities, although this is not always the case [51, 52]. The symptoms, often accompanied by a sweet metallic taste in the mouth, usually begin at home a few hours after a heavy exposure to metal oxides, e.g. after welding in a confined space, and then subside spontaneously. Leucocytosis is present during the acute illness. A recent report of bronchoalveolar lavage findings in a case of zinc fume fever showed marked neutrophil infiltration, and appropriately posed the question of how such spectacular inflammatory events remain so self-limited [53]. A strange feature of this syndrome is the occurrence of tolerance: symptoms only appear when exposure takes place after a period of days without exposure and they do not appear on subsequent days.

The exact pathogenesis of metal fume fever is poorly understood. In some instances allergic mechanisms may be involved [54], but then metal fume fever may be a misnomer or may be superimposed on bronchial asthma or hypersensitivity pneumonitis [55]. There is a striking resemblance between metal fume fever and the organic dust toxic syndrome, which occurs after heavy exposure to organic dust contaminated with micro-organisms [56]. Both syndromes have a similar clinical course with fever, leucocytosis, acute transient neutrophilic alveolitis [57] and occurrence of tolerance. These similarities indicate common pathogenic mechanisms.

With appropriate environmental control measures, cases of metal fume fever are fortunately not common any more, but the disease has certainly not disappeared and is presumably often overlooked as a simple viral infection. Metal fume fever is said not to lead to sequelae, but this has not been adequately investigated.

Chronic obstructive lung disease

There is no doubt that the main exogenous cause of chronic obstructive lung disease and emphysema in the general population is cigarette smoking [58]. However, clinically important airflow limitation occurs in less than 15% of smokers [59]. In our opinion, this concept underscores two important points with regard to occupational factors. Firstly, since the basis for the susceptibility to cigarette smoke is still largely unknown, there is no a priori reason why subjects who are (or would be) particularly susceptible to smoking-induced lung and airway disease, will not be equally susceptible to respiratory insults from the occupational environment, including metallic compounds which are capable of causing tissue destruction and inflammation. Secondly, even for environmental substances which would carry a risk similar to that of cigarette smoking (i.e. affecting only 15% of the exposed subjects) the chances of conclusively demonstrating such a risk are small because of: i) the relatively small number of subjects exposed; ii) the complexity of the exposures (in terms of their nature as well as their intensity and duration); iii) the high prevalence of smoking, particularly in industrial populations [60]; and iv) selection factors collectively known as "the healthy worker effect" [61].

Despite these methodological difficulties, several recent studies have shown that occupational factors may cause not only symptoms of industrial bronchitis, but also loss of ventilatory function, which may be of similar magnitude to that associated with cigarette smoking [61]. This view, however, is not universally accepted and the issue of the real impact of occupational exposures on ventilatory function is still controversial [62-64]. In practice, it remains impossible to determine the contribution of occupation in the causation of chronic obstructive lung disease in the individual smoking patient.

The mainly longitudinal studies that have led to the conclusion that significant airflow limitation may result from dust exposure, have essentially involved coal miners [65-67], grain dust exposed workers [68] or workers exposed to poorly defined "industrial dust, fumes or gases" [69]. No such studies have been performed with workers exposed to specific metallic compounds and the available information, therefore, mainly stems from less powerful cross-sectional observations.

The as yet somewhat controversial issue of whether chronic cadmium fume inhalation leads to pulmonary emphysema [70, 71] has recently been settled by the results of a study of a large group (n=101) of workers and ex-workers from a cadmium alloy factory in England [72]. This study showed a clear excess of functional (ventilatory function and diffusing capacity) and radiological signs of emphysema in the exposed subjects compared to appropriate controls. The causal role of cadmium was strengthened by the existence of a positive relationship between effects and dose, with the latter being estimated both by past hygiene measurements and by the internal (liver) cadmium burden. Moreover, the significance of these findings has been borne out by the demonstration of an increased mortality from
non-malignant respiratory disease in cadmium-exposed workers [73, 74]. The mechanisms for cadmium-induced emphysema are not elucidated. Animal studies suggest that fibrosis, rather than alveolar wall destruction, precede the development of emphysematous lesions [75–77].

Cross-sectional studies have also suggested an increased prevalence of chronic bronchitis and a loss of ventilatory function, sometimes mainly of forced vital capacity (FVC), associated with chronic exposure to beryllium [78], aluminium [79, 80], cobalt (or hard metal) [81–83], manganese [84], or titanium dioxide (TiO₂) [85], apparently independently from the overt forms of other respiratory diseases seen with some of these metals (see below). However, other surveys of workers exposed to these compounds do not always reach the same conclusions [86–89], possibly because of differences in total dust, in concomitant exposures, or in population characteristics and study designs.

Studies of the effect on ventilatory function in groups such as “steel workers” [58, 90–92] or “metal welders” [64, 93–101] have been largely negative, inconclusive or showing only small effects, despite the generally consistent finding of increases in the prevalence of chronic bronchitis, defined by questionnaire. However, for the methodological reasons alluded to above, one should not conclude that there are no specific work processes within these broad categories which entail a risk of significant obstructive respiratory impairment in susceptible subjects.

Bronchial asthma

Several metals are known to be capable of causing bronchial asthma [102–105]. The complex halide salts of platinum (Pt) provide a unique example of a situation where a very considerable proportion of exposed subjects may become sensitized [102]. There is good evidence for an immunoglobulin E (IgE)-mediated mechanism in platinum salt asthma [102, 106, 107]. However, the determination of Pt-specific antibodies by radioallergosorbent test (RAST) is less sensitive than skin testing in the clinical diagnosis of Pt-hypersensitivity, possibly because of a frequent increase in total IgE [107].

Other metals reported to cause asthma, mostly in case reports, are nickel [108–111], chromium [112, 113] and cobalt [28, 87, 114–118]. There is evidence for specific IgE antibody formation against protein-conjugates of nickel (Ni) [109, 110, 119] and cobalt (Co) [118, 120, 121], thus, suggesting that asthmatic reactions to these metals also result from an IgE-induced response. In a recent report [122] of asthma in subjects welding galvanized metal, sensitization to zinc was suggested; however, the possible presence of other metals such as Co, which can be present in galvanized metal [31], was not addressed. The causative agent of asthma (“potroom asthma”) and bronchial hyperreactivity in aluminium smelters (or other workers exposed to aluminium salts) [126, 127] is not known; the condition is not felt to be due to allergic mechanisms, but rather to an inflammatory reaction to irritation by fluorides.

In view of the widespread use of Ni, Cr and Co and the occurrence of respiratory exposure in many occupational settings, it is remarkable that these metals are so rarely incriminated as causing occupational asthma, particularly when it is realized that they are well known by dermatologists for their potential to cause dermal sensitization [128, 129]. Contact dermatitis caused by Cr is indeed the most prevalent occupational dermatitis in men, and Ni is the most prevalent contact allergen in women (probably because of exposure to jewellery), with cobalt-allergy frequently being associated. It should be remembered that epidemiological investigations conducted after the discovery of a single case of occupational asthma have generally disclosed the existence of many more cases [130]; the relative rarity of respiratory rather than dermal manifestations of metal sensitization may, therefore, result in part from underdiagnosis and underreporting. However, it is unlikely that this is the only explanation; differences related to route of exposure and mechanisms of sensitization must be involved. Contact dermatitis is not an IgE-mediated type of allergy, but a “cellular” allergy [131]. It is noteworthy that, at least in the case of cobalt, a condition more usually considered to be cell-mediated [132], such as alveolitis [27, 116], and asthma combined with alveolitis [133], has been described. The apparent absence of correlation between respiratory and dermal manifestations of occupational allergy to metals is a subject that should merit further epidemiological and experimental research.

It is not known whether the general features of occupational asthma caused by small molecular weight compounds also apply to metal-induced asthma, but it is fair to assume that this is so. In this case, there is probably no relationship between a background of atopy and the occurrence of occupational respiratory allergy to metals [103–105, 134, 135]. Cigarette smoking [136] or exposure to other irritants such as ozone [137] may well prove to be a more important determinant (in interaction with atopy) for the occurrence of asthma in the allergen-exposed individual (although the converse seems to hold for occupational asthma due to isocyanates, which is probably not IgE-mediated) [138].

Another recent concept, which has emerged consistently from follow-up studies of occupational asthma from various causes, is the need for a rapid and total removal from exposure of symptomatic people in order to prevent permanent asthma [139, 140]. It is reasonable to adopt the same attitude in metal-induced asthma, although the ubiquity of some of the metals involved may well make total avoidance of exposure very difficult to achieve in practice.

Intersitial lung disorders

Metallic dusts deposited in the lungs may give rise to more or less marked pulmonary fibrosis, depending on the intrinsic properties and amount of the inhaled agent, as well as on hitherto poorly understood host factors. The fibrogenic potential of inhaled substances is presumably determined by their ability to interfere with
the pulmonary immuno-inflammatory system, either directly, e.g. via effects on alveolar macrophages, or indirectly, e.g. via injury to epithelial cells. In other words, as in other forms of interstitial lung disease, the fibrotic process is probably dependent on the occurrence of alveolitis with an abnormal release of mediators by some cells [140, 141]. It must be recognized, however, that the exact pathogenic mechanisms of lung fibrosis, whether caused by metals or by other agents, have not been elucidated despite intense research efforts.

Within the conceptual framework that continued pulmonary injury and/or inflammation ultimately lead to fibrosis, the metal pneumoconioses may be categorized into three broad categories: 1) "benign" pneumoconioses with little or no fibrosis, e.g. siderosis; 2) pneumoconioses with features of diffuse interstitial pneumonitis e.g. hard-metal lung disease; and 3) pneumoconioses with sarcoid-like epitheloid granuloma formation e.g. berylliosis.

1. Pneumoconioses without fibrosis. Of the "benign" pneumoconioses the most frequent and best studied is siderosis, which is caused by the inhalation of iron compounds [6, 7, 33].

Occupational exposure to iron occurs during iron mining and related operations, during iron refining and at various stages in steelmaking, during welding, cutting and abrading of iron-containing materials, as well as during the manufacture or use of iron-containing abrasives (such as emery).

Siderosis is a "radiological disorder" in that it manifests itself by the presence of small, very radio-dense opacities with uniform distribution throughout the lungs, but without formation of conglomerates. With cessation of exposure the radiographic opacities may gradually disappear. Pure siderosis is not associated with respiratory symptoms or functional impairment, and does not predispose to tuberculosis. However, it is important to realize that exposure to silica or asbestos is not uncommon in many jobs that involve exposure to iron, thus giving rise to mixed dust fibrosis or to asbestosis, which do have associated morbidity and complications. Moreover, the view that the symptomatic interstitial fibrosis, which is sometimes found in welders (welder's pneumoconiosis), is simply siderosis with coexisting silicosis has recently been challenged on the grounds that the pulmonary silicon content of such cases did not differ from that of control lungs [142].

Other rare "benign" pneumoconioses include those caused by tin (stannosis), barium (baritosis), antimony [143, 144] and possibly zirconium [7].

2. Hard-metal lung disease and "cobalt-lung". The condition known as hard-metal lung disease has been the subject of renewed interest in recent years, particularly with regard to the causative role of cobalt [145–147].

Hard-metal or cemented tungsten carbide (WC) is found in tools used for high speed cutting, drilling, grinding or polishing of other metals or hard materials. In a minority of workers involved in the manufacture or utilization of these tools, bronchial asthma and diffuse pulmonary fibrosis have been described in various areas of the world [81, 88, 114–116, 148–153]. On the basis of relatively crude animal data [154] showing little toxicity from the main constituent of hard-metal, i.e. tungsten carbide, the consensus is that tungsten carbide is not the agent responsible for the fibrosis, but that it is more probably due to the binding agent, i.e. cobalt.

The pneumonitis is often of the desquamative type, and in the subacute forms it appears to be mainly characterized by the presence of multinucleated giant cells (to the extent that the proposal was made that giant cell interstitial pneumonitis (GIP) may be pathognomonic for hard-metal exposure) [155]. The aetiologic role of cobalt in giant cell interstitial pneumonitis has been strongly supported by the observation of several cases of a disease identical to hard-metal lung disease in diamond polishers, who used polishing discs made with microdiamonds (not tungsten carbide) cemented with cobalt [27, 156]. The term cobalt-lung has, therefore, been proposed [27].

The mechanisms for the pulmonary toxicity of cobalt have not yet been discovered [121, 146]. Unlike the classical pneumoconioses in which the lung burden of dust seems to be the predominant factor in causing the disease (even if host factors do play a role in these diseases also), several features of cobalt-lung suggest some form of hypersensitivity or host idiosyncrasy, perhaps analogous to the situation observed with beryllium (see below). Indeed for both beryllium and cobalt the dose-response relationship is not straightforward: on the one hand the attack rate of the disease appears to be determined by the dose of exposure, but on the other hand, within similarly exposed workforces only a small minority of sometimes very young subjects, with relatively little cumulative exposure, are affected [27]. The known dermal sensitizing potential of cobalt and the existence of cobalt-asthma suggest immunological hypersensitivity to cobalt as causing the fibrosing alveolitis. However, this is by no means proven, and other options must be envisaged, such as oxygen free-radical mediated toxicity resulting from the ability of cobalt to promote the Fenton reaction [156].

In view of the widespread use of cobalt in alloys, magnets, special corrosion resistant steels, pigments, plastics and many other applications [31] it is very important to discover the determinants of the toxicity of this metal, both with regard to the chemical or physical form of cobalt compounds that are "intrinsically" harmful, and the extent to which host or other factors may render cobalt toxic. It is indeed remarkable that no lung fibrosis has been reported in workers involved in the mining or refining of cobalt [157], except perhaps for four cases which arose before World War II in a German factory making cobalt carbonate [158].

Cobalt does not appear to be implicated, at least not in the same way as in the previous fibroses, in the causation of dental technician's pneumoconiosis, which may arise from excessive exposure to dust produced from the machining of vitallium, an alloy consisting of chromium-cobalt-molybdenum [159]. Histologically this fibrosis is manifested by dense interstitial fibrosis around dust deposits, without giant cells. Vitallium dust is, however,
not the sole dust to which dental technicians may be exposed, and other agents such as alginate [160], beryllium, hard-metal and silica may also cause lung disease in these workers [29, 30, 161, 162].

3. Interstitial lung disease with granuloma formation. Berylliosis or chronic beryllium disease is well known for its striking histological and clinical resemblance to sarcoidosis. The clinical, epidemiological and experimental aspects of the disease have recently been reviewed [163-165]. Apart from the extraction and primary refining industry, beryllium exposure is an occupational risk in many sectors of modern technological industries, such as aircraft and aerospace, electronics, computers and communications, where beryllium may be found in alloys (often with copper) or in ceramics. However, it is important to realize that scrap metal refiners [166], non-ferrous metal welders, dental technicians, laboratory maintenance or transport workers may also be exposed to an often unsuspected, but significant, risk.

The differential diagnosis between chronic beryllium disease and other interstitial lung disease, mainly sarcoidosis, rests essentially on the proof of exposure, which may be difficult to obtain solely on the basis of the occupational history. The finding of beryllium in biological samples confirms ongoing (urine) and sometimes past exposure (lung tissue, lymph nodes). Specific blast transformation test of lymphocytes (LTT) in response to culture with beryllium appears to be highly specific, but not very sensitive in peripheral blood lymphocytes, although recent data suggest a great improvement in sensitivity in lymphocytes from the bronchoalveolar lavage [167].

This and other experimental evidence strongly suggest that beryllium triggers a cell-mediated immune response, thereby explaining the low incidence and high variability in time of onset of disease in exposed workers. However, the chemical and physical forms of beryllium probably also play a role, which remains to be clarified.

It is possible that beryllium is not the sole metal involved in causing sarcoid-like lung disease. Zirconium may cause granulomas in human skin, but has not been associated with granulomatous or fibrotic lung disease in man [168]. Titanium, otherwise considered as virtually non-toxic, has been suggested as an aetiological agent in a case of granulomatous lung disease on the basis of the presence of metallic particulates containing titanium in the lung granulomas and of a positive blood LTT to titanium chloride, and not to the other metals tested, including beryllium [169]. On the basis of similar reasoning, aluminum exposure has also been suggested to have led to sarcoid-like lung granulomatosis in a patient who had apparently not been exposed to beryllium [170]. These cases confirm that an occupational exposure (also to silicates, such as talc) should always be considered in cases of "sarcoidosis".

Exposure to rare earth metals (or lanthanides), of which cerium is the most abundant element, has also been associated with interstitial fibrosis in a small number of subjects [171-175]. Rare earths are essential components of carbon arc lamps used for photoengraving, and the majority of cases of this pneumoconiosis have been described in photoengravers. Rare earths are also used in the fabrication and polishing of glass. One histological report [171] mentions the presence of granulomatous interstitial alterations, although this is not mentioned in the other available pathological descriptions of cerium-pneumoconiosis [175].

The authors of a recent report [170] posed the interesting question as to whether aluminium-induced pulmonary fibrosis or "aluminium-lung" may present in its early stage as a granulomatous lung disease. The very existence of aluminium-lung has been the subject of considerable controversy [176, 177]. Indeed, in view of the extensive industrial use of aluminium, lung disease caused by exposure to this metal is very uncommon. On reviewing past literature, DORMAN [176] concluded that fibrosis only occurred: 1) in workers who were heavily exposed to submicron-sized aluminium plates lubricated with an easily removed lubricant during the production of fire works and explosives; and 2) in workers involved in the smelting of bauxite for the production of corundum abrasive (Shaver's disease), but who were perhaps also exposed to crystalline silica. However, isolated cases of alveolar proteinosis [178] or fibrosis in aluminium welders or polishers [170, 179-181] do not entirely corroborate this conclusion. The physical characteristics of the aluminium particles, notably their surface area, or even their possibly fibrous nature [182], have been suggested as important determinants of their bioreactivity and hence fibrogenicity.

Although the synthetic abrasive silicon carbide (SiC) or carborundum is not a metallic compound - in contrast to some other abrasives, such as corundum (Al₂O₃) or emery (corundum with iron oxides) - it is worth mentioning that respiratory disease, including pneumoconiosis with fibrosis, has been associated with exposure to SiC, during its manufacture or use [183-185].

Lung cancer

Several metallic compounds are proven lung carcinogens in humans; they include radioactive metals (and their decay products) and non-radioactive metals [186-189].

The increased incidence of lung cancer observed in uranium miners has been causally linked with the inhalation of radon daughters [190]. However, the underground mining of other compounds may also be associated with significant exposure to radioactivity, if there is insufficient ventilation of the radon which leaks from igneous rocks [191]. This factor has been implicated in the higher incidence of lung cancer seen in various groups of miners, such as Swedish iron ore miners [192], although it does not seem play a role in the similarly increased lung cancer incidence of French iron ore miners [193]. The role of domestic radon gas exposure in the causation of bronchial cancer is the subject of intense research [194].

Epidemiological and experimental studies have clearly established the carcinogenic risk of exposure to arsenic,
Clusters of cancers are found. Thus, the relationship of arsenic to increased lung cancer risk in copper smelting workers is unequivocal. This is also the case for other occupational exposures to arsenic, such as the manufacture or spraying of arsenical pesticides [196-197]. A greatly increased risk of lung cancer has also been demonstrated for workers in the primary chromate production and in the chromate pigment industry [186-189, 198-201]. Epidemiological studies of the carcinogenic risk of exposure to chromium during metal plating or during stainless steel welding have been considered inconclusive. However, the exposure in these jobs is to the carcinogenic form of chromium, i.e. hexavalent chromium, and there are several recent studies showing an increased lung cancer mortality in welders or platers [202-206]. Occupational exposure to nickel in nickel smelters and refineries is also unequivocally associated with an increase in cancer of the lung and the nasal sinuses [207-208]. Again the situation in nickel-using industries is less clear, but a cancer hazard has not been excluded.

There are also epidemiological or experimental indications that antimony, beryllium, cadmium, cobalt and iron, or occupations associated with these metals are carcinogenic for the human lung [186-189]. Thus, studies of iron and steel foundry workers have consistently found an increased risk of lung cancer, but this may be due to the emission of polycyclic aromatic hydrocarbons as pyrolysis products of organic materials used [209, 210]. An increased mortality from lung cancer attributable to cadmium has also been shown in some [74, 211, 212], but not all [213-215], recent studies of cadmium exposed workers.

Clearly the study of occupational exposures in the causation of lung cancer is hampered by the effect of cigarette smoking, which has been found to act in any fashion from less than additive to multiplicative with occupational exposure, depending on the agent, but also on characteristics of the study population [191, 216]. Since there are no indications that specific histological types of lung cancer are associated with any specific environmental carcinogen [217-219], it is not possible to attribute a particular lung cancer to a particular aetiology.

Various studies have shown that the proportion of lung cancer attributable to occupation is far from negligible, being around 15%, but possibly up to 47%, in some populations [205, 206, 220-224].

In all of these studies, most of the incriminated exposures are related to asbestos, underground mining, and metals or metal industries. It is therefore worthwhile, even in the individual patient with lung cancer, to thoroughly search the past occupational history for exposure to carcinogens rather than to limit the aetiological “investigation” to cigarette smoking. Not only can this have implication in terms of compensation, where legislation provides for such compensation, but it may also help to discover or further strengthen the role of hitherto unproven carcinogenic exposures, particularly when clusters of cancers are found.

Conclusions and perspectives

This review attempts to show that the toxic effects of metallic compounds may be manifested in almost any form of pulmonary disease. The most important step towards uncovering a possible occupational or environmental cause for an illness in the individual patient is a careful and complete history taking. Inquiring about present and past jobs and understanding the patient’s occupational history generally require a good knowledge of existing or past work practices. To link this with possible pulmonary disorders, it is essential for the practising physician to possess, and frequently consult, standard textbooks on occupational disease and to complement this with some awareness of the relevant contemporary literature. However, the recognition of occupational disease may in addition sometimes require an alertness for “strange” occurrences and some degree of scepticism against “idiopathic” or “intrinsic” origins.

This attitude must always be backed by elementary scientific principles of toxicology and epidemiology.

Obviously further clinical, radiological, functional, pathological and other investigations will usually be needed to characterize the disease and its progression. Various immunological assays may be helpful for evaluating immunologically mediated lung disease, including that caused by metals, although these tests are generally still to be regarded “as adjuncts to clinical diagnosis, and not as independent proof of causation or of diagnosis” [225]. When hypersensitivity is suspected, bronchial challenge testing may be justified [226].

Bronchoalveolar lavage (BAL) is increasingly used, mainly in the assessment of interstitial lung diseases [227]. Bron [228] has recently advocated the use of this technique in the pneumoconioses in order to eliminate other causes of lung disease, to document mineral dust exposure, to support other clinical information, and to investigate the biological mechanisms of these diseases.

With regard to metal toxicity, no systematic studies have as yet appeared concerning the profile of inflammatory cells in BAL, although case reports have mentioned the use of this technique. Besides the proportions of inflammatory cell types, other features may be of possible diagnostic value, such as the presence of multinucleated giant cells. The latter were found in BAL from subjects with cobalt-related fibrosing alveolitis [27]. Analysis of mediators of inflammation and fibrosis [229], cellular subtypes and responsiveness of lymphocytes to in vitro challenge [167] are all potentially useful. The toxic effects of metallic compounds on pulmonary alveolar macrophages are also being investigated, but so far macrophages from laboratory animals have mainly been used.

Documentation of exposure to metals may be obtained from the analysis of metal concentrations in blood or urine taken for biological monitoring [230]. In addition, elemental analysis may be carried out on BAL, on biopsy tissue or on autopsy material. Both macroanalytical (or bulk) and microanalytical techniques may be applied [231-233]. The former are destructive techniques which allow the detection, quantitation and/or characterization.
of crystalline structure of inorganic elements. The latter techniques allow in situ analysis of individual cells and particles. Several microanalytical techniques exist [231], but the one which has been most widely applied, mainly in silicosis and asbestos-related lung disease, is based on the analysis of X-rays emitted from elements following their bombardment with electrons: energy dispersive X-ray analysis (EDXRA). This analysis may be coupled to scanning or transmission electron microscopy.

One of the disadvantages of this technique in the field of pulmonary metal-toxicity, is that it does not allow the detection of beryllium. The latter metal can, however, be detected by electron energy loss spectrometry (EELS) [234] and laser microprobe mass analysis (LAMMA) [235].

A potential danger of indiscriminate use of these techniques is that the finding of metallic elements in pulmonary metal-toxicity, is that it does not allow the detection of crystalline structure of inorganic elements. The latter technique in the field of pulmonary metal-toxicity, is that it does not allow the detection of beryllium. The latter metal can, however, be detected by electron energy loss spectrometry (EELS) [234] and laser microprobe mass analysis (LAMMA) [235].

Acknowledgements: The author thanks Prof. M. Demedts, Prof. D. Lahaye, Dr H. Veulemans and Dr C. Lewis for critical reading of the manuscript, and G. Cross, I. Dekeye and M. Huguenin for typing it.

References

80. Townsend MC, Enrle FC, Sussman NB, Bonney TB, Rippon LL. - Pulmonary function in relation to total dust.
K. - The existence of specific antibodies to cobalt in hard metal asthma.
Clim Allergy, 1988, 18, 451-460.
121. Demedts M, Ceuppens JL. - Respiratory diseases from hard metal or cobalt exposure. Svolving the enigma. (Editorial).
122. Malo JL, Carrier A. - Occupational asthma due to fumes of galvanized metal.
123. Field GB. - Pulmonary function in aluminum smelters.
Thorax, 1984, 39, 743-751.
124. Saric M, Godnh-Cvar J, Gomzi M, Stilinovic L. - The role of atopy in potroom workers' asthma.
125. Wergeland E, Lund E, Waage JE. - Respiratory dysfunction after potroom asthma.
Eur J Respir Dis, 1985, 66, 105-118.
128. Doms-Goossens A, Ceutergick A, Vanmaele N, Degroef N. - Follow-up study of patients with contact dermatitis caused by chromates, nickel, and cobalt.
129. Fisher AA. - Dermatitis and discoloration from metals.
130. Burge PS. - Problems in the diagnosis of occupational asthma.
Chest, 1988, 93, 407-411.
137. Snider GL. - Interstitial pulmonary fibrosis - which cell is the culprit.
Arch Mal Prof, 1979, 40, 110-112.
U.S. Department of health and human services. Publi no. 82-107, CDC-NIOSH, 1981.
Chest, 1984, 86, 513-514.
143. Balmes JR. - Respiratory effects of hard-metal dust exposure.
Poumon-Coeur, 1981, 37, 165-175.
147. Hartung M. - Lungfibrosen bei Hartmetallschleifern.
150. Schepers GWH. - The biological action of particulate metal, tantalum oxide, cobalt oxide, tungsten metal, tungsten carbide and carbon, tungsten carbide and cobalt.
Am Arch Ind Health, 1955, 12, 121-146.
151. Abraham JL. - Lung pathology in 22 cases of giant cell interstitial pneumonia (GIP) suggests GIP is pathognomonic of cobalt (hard metal) disease. (Abstract).
153. Morgan LG. - A study into the health and mortality of men exposed to cobalt and oxides.
156. Loewen GM, Weiner D, McMahon J. - Pneumoconiosis in an elderly dentist.
Chest, 1988, 95, 1312-1313.
160. Cullen MR, Cherniack MG, Kominsky JR. - Chronic

Toxicité des métaux et appareil respiratoire. B. Neney.

RÉSUMÉ: Le type d'affection pulmonaire causée par les composés métalliques dépend de la nature de l'agent inhalé, de sa forme physico-chimique, de la dose, des conditions d'exposition, et de facteurs liés à l'hôte. Les fumées ou formes gazeuses de différents métaux (par exemple Cd, Mn, Hg, Ni (CO)₄, ZnCl₂, V₀₂) peuvent entraîner un asthme qui peut s'accompagner d'une infiltration de cellules métalliques, par exemple Zn et Cu et peut être due à des antécédents d'asthme. L'agent peut être une réaction pseudo-grippale ou une allergie au nickel, au chrome ou au cobalt. Les fumées de métaux peuvent causer une inflammation des tissus pulmonaires et entraîner une fibrose, une pneumopathie ou une bronchopneumopathie aiguë. La cause de l'inhalation de fumées métalliques, par exemple Zn, Cu et Cu, est due à la formation de composites métalliques, par exemple Cd, Mn, Hg, Ni (CO)₄, ZnCl₂, V₀₂. Les pouvoirs de métaux peuvent déterminer le type de pneumopathie, par exemple Cd, Mn, Hg, Ni (CO)₄, ZnCl₂, V₀₂, qui peut entraîner une inflammation des cellules métalliques, par exemple Zn et Cu, et peut être due à des antécédents d'asthme. L'agent peut être une réaction pseudo-grippale ou une allergie au nickel, au chrome ou au cobalt. Les fumées de métaux peuvent causer une inflammation des tissus pulmonaires et entraîner une fibrose, une pneumopathie ou une bronchopneumopathie aiguë. La cause de l'inhalation de fumées métalliques, par exemple Zn, Cu et Cu, est due à la formation de composites métalliques, par exemple Cd, Mn, Hg, Ni (CO)₄, ZnCl₂, V₀₂. Les pouvoirs de métaux peuvent déterminer le type de pneumopathie, par exemple Cd, Mn, Hg, Ni (CO)₄, ZnCl₂, V₀₂, qui peut entraîner une inflammation des cellules métalliques, par exemple Zn et Cu, et peut être due à des antécédents d'asthme. L'agent peut être une réaction pseudo-grippale ou une allergie au nickel, au chrome ou au cobalt. Les fumées de métaux peuvent causer une inflammation des tissus pulmonaires et entraîner une fibrose, une pneumopathie ou une bronchopneumopathie aiguë. La cause de l'inhalation de fumées métalliques, par exemple Zn, Cu et Cu, est due à la formation de composites métalliques, par exemple Cd, Mn, Hg, Ni (CO)₄, ZnCl₂, V₀₂. Les pouvoirs de métaux peuvent déterminer le type de pneumopathie, par exemple Cd, Mn, Hg, Ni (CO)₄, ZnCl₂, V₀₂, qui peut entraîner une inflammation des cellules métalliques, par exemple Zn et Cu, et peut être due à des antécédents d'asthme. L'agent peut être une réaction pseudo-grippale ou une allergie au nickel, au chrome ou au cobalt. Les fumées de métaux peuvent causer une inflammation des tissus pulmonaires et entraîner une fibrose, une pneumopathie ou une bronchopneumopathie aiguë. La cause de l'inhalation de fumées métalliques, par exemple Zn, Cu et Cu, est due à la formation de composites métalliques, par exemple Cd, Mn, Hg, Ni (CO)₄, ZnCl₂, V₀₂. Les pouvoirs de métaux peuvent déterminer le type de pneumopathie, par exemple Cd, Mn, Hg, Ni (CO)₄, ZnCl₂, V₀₂, qui peut entraîner une inflammation des cellules métalliques, par exemple Zn et Cu, et peut être due à des antécédents d'asthme. L'agent peut être une réaction pseudo-grippale ou une allergie au nick
de 15%, et l'exposition à des métaux est fréquemment incriminée. Le travail au fond de la mine d'uranium ou de fer, est associé à une incidence élevée de cancer du poumon, par suite de l'exposition au radon. Au moins certaines formes d'arsenic, de chrome et de nickel, sont des carcinogènes pulmonaires bien démontrés chez l'homme. Il existe également une augmentation de la mortalité par cancer du poumon chez les travailleurs du cadmium et chez les travailleurs du fer et de l'acier.