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Mast cell regulation of airway smooth muscle

function in asthma
P. Bradding

A
sthma is a common disease affecting f10% of the adult
Western population [1, 2]. It is characterised by the
presence of variable and potentially reversible airflow

obstruction, which occurs as the result of bronchoconstriction,
airway mucus plugging and airway oedema. Pathologically
there is evidence of airway inflammation and remodelling [3–
7]. The mucosal inflammatory infiltrate commonly comprises
activated T-cells, eosinophils and mast cells, while the
accompanying structural changes include subepithelial col-
lagen deposition, goblet cell- and mucous gland-hyperplasia,
airway smooth muscle (ASM) hypertrophy and ASM hyper-
plasia.

An important physiological feature of asthma is the presence
of bronchial hyperresponsiveness (BHR) [8]. This means there
is an exaggerated bronchoconstrictor response of the ASM to
direct and indirect stimuli such as histamine and exercise,
respectively. While BHR is aggravated in the presence of
classic allergic eosinophilic airway inflammation, it persists
once this inflammation is controlled and is not present in
patients with eosinophilic bronchitis [8, 9]. This suggests that
there is either a fundamental abnormality of ASM behaviour in
asthmatic subjects or that there are interacting factors that have
not been previously recognised. In support of the former,
several phenotypic differences are evident in ASM cells
cultured from the airways of asthmatic subjects. For example,
when compared with normal ASM cells, cultured asthmatic
ASM cells proliferate faster due to an altered pattern of matrix
protein deposition [10, 11], secrete greater amounts of
connective tissue-derived growth factor in response to trans-
forming growth factor-b stimulation [12], and secrete markedly
increased amounts of the chemokine CXCL10 in response to
activation by cytokines [13]. There is decreased expression of
prostaglandin (PG)E2 by the asthmatic ASM [14], and
proliferation of asthmatic ASM is not inhibited by corticoster-
oids due to impaired expression of the transcription factor
CCAAT/enhancer binding protein-a [15]. It is remarkable that
these differences are evident after several passages in culture;
moreover, these differences support the view that there is, in
part, a primary ASM abnormality in asthma.

Mast cells play a significant role in the pathophysiology of
asthma due to their ability to release a host of pleiotropic

autacoid mediators, proteases and cytokines in response to
activation by both immunoglobulin (Ig)E-dependent and
diverse nonimmunological stimuli [16, 17]. For example,
following laboratory allergen challenge, secretion of the
autacoid mediators histamine, PGD2 and leukotriene (LT)C4

induces bronchoconstriction, mucus secretion and mucosal
oedema, thus contributing to acute symptoms. Mast cell-
derived cytokines include interleukin (IL)-4, IL-5 and IL-13,
which regulate both IgE synthesis and the development of
eosinophilic inflammation [18]. In addition, the mast cell
neutral proteases, tryptase and chymase, interact with many
cells that potentially contribute to airway wall remodelling.
Importantly, in chronic asthma, mast cells within the bronchial
mucosa are in an ‘‘activated’’ secretory state, with evidence of
ongoing mediator release and cytokine synthesis [19–22].

Mast cells are found adjacent to blood vessels in the lamina
propria in normal human airways, but in asthma they migrate
into three key structures: the airway epithelium [23]; the
airway mucous glands [24]; and the ASM [25]. This anatomical
relocation places the mast cell within several dysfunctional
airway elements and suggests that the targeted delivery of
their mediators is likely to be central to the disordered airway
physiology. Of particular interest in relation to bronchocon-
striction and BHR is the presence of mast cells within the ASM
bundles. Eosinophilic bronchitis is a common cause of cough
and is characterised by the presence of a sputum eosinophilia
occurring in the absence of variable airflow obstruction or BHR
[9]. A detailed comparison of the immunopathology of asthma
and eosinophilic bronchitis has revealed an identical pathology
in terms of T-cell infiltration, activation status and phenotype,
eosinophil infiltration and activation, mucosal mast cell
numbers, T-helper cell (Th)2 cytokine expression, epithelial
integrity, sub-basement membrane collagen deposition and
mediator concentrations, including histamine and PGD2 [25–
27]. This suggests that many of the immunopathological
features previously attributed as causing asthma may not be
as important for the development of airflow obstruction, BHR
and remodelling as previously suggested. The striking
difference between the pathology of asthma and eosinophilic
bronchitis resided within the ASM bundles, which contained
numerous mast cells in asthma patients but virtually none in
normal subjects or patients with eosinophilic bronchitis [25].
The majority of these mast cells contained both tryptase and
chymase, and expressed IL-4 and IL-13 but not IL-5.
Interestingly, there were almost no T-cells or eosinophils in
the smooth muscle of any of the study groups. There was a
significant correlation between ASM mast cell number and
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BHR within the asthmatic group supporting the view that this
observation is of functional relevance. Such initial findings
have been confirmed by several independent groups [28–31]
and it has recently been shown that the mast cells within the
ASM bundles in asthma demonstrate ultrastructural features
of activation [31]. These studies suggest that ASM infiltration
by mast cells is one of the critical determinants of the asthmatic
phenotype [28–31].

The specific recruitment of mast cells to the ASM in asthma
raises several important questions; in particular, whether the
cells interact, and if so, what are the functional consequences
for airway function? Studies examining whole cell interactions
in vitro are sparse. However, human lung mast cells adhere to
ASM cells, in part, via an interesting molecule known as
tumour suppressor in lung cancer-1, suggesting that specific
cellular cross-talk is likely [32]. In addition, potential mechan-
isms of mast cell recruitment by the ASM have been identified
[13] and inhibition of this recruitment may offer a new angle
on asthma therapy [33]. In contrast, it has been known for
several years that numerous mast cell-derived mediators
directly affect ASM function when examined in isolation. For
example, the mast cell autacoid mediators histamine, PGD2

and LTC4 are all potent agonists for ASM contraction, and
exogenously administered tryptase induces bronchoconstric-
tion and BHR in response to histamine in dogs and sheep [34,
35]. In vitro, tryptase potentiates the contractile response of
sensitised bronchi to histamine [36] and induces proliferation
of human ASM [37, 38]. Instillation of Th2 cell conditioned
medium to the airways of naı̈ve mice induces BHR within 6 h,
and requires expression of the IL-4 receptor a-subunit and
signal transducer and activator of transcription (STAT)6,
suggesting a critical role for IL-4 and/or IL-13. Both of these
ILs produce similar effects when administered individually
[39]. TNF-a induces BHR in normal subjects and exacerbates
BHR in patients with asthma [40, 41], while blocking tumour
necrosis factor (TNF)-a activity in asthma patients improves
BHR [42, 43]. Human lung mast cells are a source of IL-4, IL-13
and TNF-a [23, 44–46], which suggests a further mechanism
through which these cells could contribute to the development
of BHR.

In the present issue of the European Respiratory Journal, CHHABRA

et al. [47] have examined the ability of two mast cell mediators,
histamine and tryptase, to modify the synthetic ability of the
ASM derived from both asthmatic and nonasthmatic subjects
[47]. Specifically, they examined the release of the cytokine
granulocyte-macrophage colony-stimulating factor (GM-CSF)
and the RANTES (regulated on activation, normal T-cell
expressed and secreted) chemokine. The nonasthmatic subjects
were patients undergoing lung transplantation for a variety of
end-stage lung diseases or resection for carcinoma, while the
asthmatic ASM was obtained at bronchoscopy. However, no
important differences in secretory responses were found
between the two groups, so it is unlikely that any asthma-
specific effects were missed. The main observation from the
study was that histamine potentiated IL-1b-induced GM-CSF
production but inhibited TNF-a-induced RANTES production.
In contrast, tryptase only increased GM-CSF secretion after
stimulation by both IL-1b and TNF-a, and did not affect
RANTES secretion. Pharmacological blockade suggested that
the effects of histamine were predominantly mediated via the

H1 and not the H2 receptor. This was unexpected as CHHABRA

et al. [47] predicted that stimulation of H2 receptors would
increase intracellular cyclic adenosine monophosphate and
thus inhibit GM-CSF release, while at the same time
potentiating RANTES release. The authors therefore pro-
posed that the H1-mediated effects predominated and occur
via activation of H1-coupled phospholipase C. However, it
must be borne in mind that G-protein coupled receptors
(GPCRs), such as H1 and H2, that were once thought to
mediate all their effects via modulation of intracellular cyclic
nucleotides are now known to couple to many diverse
signalling pathways [48]. For example, these include the
membrane-delimited modulation of numerous ion channels
involved in the regulation of intracellular calcium signals
[49, 50].

The biological significance of the observations of CHHABRA et al.
[47] is uncertain. They highlight how the behaviour of cells
cannot always be readily predicted and that the potential
effects of mast cells on ASM function are undoubtedly
complex. It is possible that the effects of histamine and
tryptase in combination may differ from those of the
individual mediators alone, for example via GPCR cross-talk,
and so it would have been interesting for the authors to also
examine this. It is also possible that the complex milieu of
mediators released from intact mast cells will produce yet
different effects, so in the future it will be important to study
these cells in co-culture.

In summary, the location of mast cells within the airway
smooth muscle bundles is likely to be important for the
pathophysiology of asthma and may occur in response to, with
subsequent aggravation of, an underlying abnormality in the
behaviour of asthmatic airway smooth muscle. Understanding
the consequences of this cellular interaction through the type
of study by CHHABRA et al. [47] may offer new approaches to
the treatment of this common and chronic disease.
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