Components of airway disease

To the Editors:

“What we think we know already often prevents us from learning”
(Claude Bernard)

I endorse the view of HARGREAVE and PARAMESWARAN [1] that the components of airway disease, inflammation (bronchitis), reversibility (asthma), and chronic airflow limitation (chronic obstructive pulmonary disease (COPD)), are not “mutually exclusive and […] commonly occur together.” I would like to mention further evidence in support of their position.

I would add the longitudinal (natural history) perspectives of the primary-care practitioner [2] and the epidemiologist [3]. Clinical reports from primary care document that acute bronchitis can precede asthma, which then develops into severe COPD over a few years [4] to decades [2]. Perhaps the best longitudinal evidence derives from a cluster-randomised, population-based 20-yr prospective study finding that asthma was the strongest risk factor for subsequent COPD, both in relative (hazard ratio (HR)=12.5) and absolute (attributable risk (AR)=18.5%) terms compared with tobacco smoking (HR=2.9 for current smoking, AR=6.7% for ever-smoking) [3].

The dogma that asthma and COPD are different diseases (and therefore should be studied separately) appears to have been derived from the mainly cross-sectional perspectives of academic referral lung specialists (adult and paediatric allergists, pulmonologists) who for the most part have not had the opportunity to observe the natural history of lung disease over a patient’s lifetime. I can think of no better explanation for a recent statement by a prominent leader in lung research: “Chronic obstructive pulmonary disease is probably the only chronic disease for which the finger of blame can be pointed at a single risk factor – tobacco smoking” [5].

D.L. Hahn
Dean Medical Center, Madison, Wisconsin, USA.

REFERENCES

DOI: 10.1183/09031936.00101806

Three new cases of apparent occupational asthma in swine confinement facility employees

To the Editors:

In a previous issue of the European Respiratory Journal, DOSMAN et al. [1] reported on four cases of occupational asthma in newly employed workers in the large, recently developed, swine production facilities in Saskatchewan (Canada). All were full-time employees and all developed symptoms suggestive of asthma within a short time of commencing employment. None of the cases had a history of asthma, allergy symptoms or previous exposure to indoor air contaminants of swine confinement facilities. Work in swine buildings has been associated with respiratory symptoms, reductions in mean and across-shift lung function values [2], and increased bronchial responsiveness [3, 4]. Asthma has been reported in swine workers, but this has typically occurred in workers with lengthy employment [5, 6].

Cases 1–3 in our initial report showed some reaction to skin-prick allergy tests. While forced expiratory volume in one second (FEV1) for case 1 was relatively stable over time, provocation challenge causing a 20% fall in FEV1 (PC20) was reduced for several months following resignation from the swine barn. Case 1 also experienced symptoms requiring removal from the barn during a re-entry challenge. It was speculated that these cases might exhibit a type of occupational asthma, described by BROOKS et al. [7], as “not-so-sudden onset” nonallergic asthma resulting from irritant exposure over a number of months.

Since the initial study [1], we have encountered three additional cases that have been labelled as cases 5, 6 and 7 (table 1). In contrast to the previous four cases, the cases reported herein are all male. Again, none of the cases had a history of asthma or wheeze and none had reported previous regular occupational exposures in a swine confinement facility. Each of the cases developed symptoms within weeks to months of commencing employment and each has had continued sensitivity to exposures in a swine barn.
Case 5 was a 48-yr-old ex-smoker who began working in the swine industry in late 2002. Within 6 months of employment, he began to have respiratory symptoms, which eventually led to a severe episode several months after commencement of work. Pulmonary function showed evidence of mild airways obstruction, but a post-bronchodilator test was not conclusive. He underwent methacholine challenge testing where FEV1 decreased by 18% at 4 mg·mL⁻¹, compatible with a mild increase in airways responsiveness. However, overall PC20 was not calculable because, at 8 mg·mL⁻¹, the decrease in FEV1 was 12%. He exhibited mild skin-prick test reactivity to shellfish and house dust, along with strong reactivity to grain dust. He continued to be bothered by cough and wheeze shortly after commencing, which continued after quitting the barn. Allergy skin-prick testing and pulmonary function testing was not completed.

The addition of these new cases to the previous case series [1] leads us to believe that the extent of this condition may be more common than originally suspected, and that some newly employed workers in swine confinement facilities are at risk of developing a form of asthma identified as “not-so-sudden onset asthma” [7]. Pre-employment assessments and frequent early employment monitoring of workers may be important tools in addressing early respiratory effects in workers in this industry. Finally, we believe that studying this population would provide further insight into the mechanisms by which occupational asthma occurs among workers in these facilities.

J.A. Dosman*, J.A. Lawson, S.P. Kiryuchk, Y. Cormier*, J. Biem and N. Koehncke*

*Institute of Agricultural Rural and Environmental Health (IAREH), and *Dept of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan and ^Hopital and Universite Laval, St Foy, Quebec, Canada.

REFERENCES

DOI: 10.1183/09031936.00096006

TABLE 1

<table>
<thead>
<tr>
<th>Age yrs</th>
<th>Case 5</th>
<th>Case 6</th>
<th>Case 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48</td>
<td>47</td>
<td>30</td>
</tr>
<tr>
<td>Occupational exposure time months</td>
<td>21</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Time from onset of work to onset of symptoms months</td>
<td>6</td>
<td>Shortly after commencing work</td>
<td><1 yr</td>
</tr>
<tr>
<td>FEV1 L</td>
<td>2.47±</td>
<td>3.36±</td>
<td>Not completed</td>
</tr>
<tr>
<td>PC20 mg·mL⁻¹</td>
<td>Not calculable</td>
<td>1.95±</td>
<td>Not completed</td>
</tr>
<tr>
<td>Wheal size mm²</td>
<td>Shellfish (1–2)</td>
<td>House dust mite (1–2)</td>
<td>Not completed</td>
</tr>
<tr>
<td></td>
<td>House dust (1–2)</td>
<td>Grain dust (>3)</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td>Ex-smoker of 11 yrs</td>
<td>Ex-smoker of 1 yr</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

FEV1: forced expiratory volume in one second; PC20: provocative concentration causing a 20% fall in FEV1. Cases described herein are designated as cases 5, 6, 7 to continue with cases 1, 2, 3 and 4 from our previous case series [1]. ± June 2004; † January 2005; ∗ May 2005; ‡ notable skin-prick test reactivity.