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ABSTRACT: Inflammatory mechanisms appear to play a significant role in some types
of pulmonary hypertension (PH), including monocrotaline-induced PH in rats and
pulmonary arterial hypertension of various origins in humans, such as connective tissue
diseases (scleroderma, systemic lupus erythematosus, mixed connective disease), human
immunodeficiency virus infection, or plasma cell dyscrasia with polyneuropathy,
organomegaly, endocrinopathy, monoclonal (M) protein and skin changes (POEMS)
syndrome.

Interestingly, some patients with severe pulmonary arterial hypertension associated
with systemic lupus erythematosus have experienced significant improvements with
immunosuppressive therapy, emphasising the relevance of inflammation in a subset of
patients presenting with PH. Patients with primary PH (PPH) also have some immuno-
logical disturbances, suggesting a possible role for inflammation in the pathophysiology
of this disease. A subset of PPH patients have been shown to have circulating
autoantibodies, including antinuclear antibodies, as well as elevated circulating levels of
the pro-infammatory cytokines, interleukins -1 and -6. Lung histology has also revealed
inflammatory infiltrates in the range of plexiform lesions in patients displaying severe
PPH, as well as an increased expression of the chemokines regulated upon activation,
normal T-cell expressed and secreted (RANTES) and fractalkine.

Further analysis of the role of inflammatory mechanisms is necessary to understand
whether this component of the disease is relevant to its pathophysiology.
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Pulmonary arterial hypertension (PAH) is characterised
by an elevated mean pulmonary artery pressure >25 mmHg
at rest, with a normal pulmonary artery wedge pressure. This
severe condition leads to progressive right heart failure and
ultimately death [1]. The Evian Classification reflects recent
advances in the understanding of pulmonary hypertensive
diseases, and recognises the similarity between "unexplained"
pulmonary hypertension (PH) (primary PH (PPH)) and
PAH of certain known aetiologies, such as collagen vascular
diseases, human immunodeficiency virus (HIV) infection,
portal hypertension, congenital systemic-to-pulmonary shunts
and anorexigen exposure [2].

PAH results from chronic obstruction of small pulmonary
arteries, which is due, at least in part, to endothelial and
vascular smooth muscle cell dysfunction and proliferation [3].
The recent discovery that a significant proportion of patients
with familial, as well as sporadic, PPH have germline muta-
tions of genes encoding receptor members of the transforming
growth factor (TGF)-p family (bone morphogenetic protein
receptor-II and activin receptor-like kinase-1), suggests that

dysfunctional TGF-B signalling could lead to an abnormal
proliferation of pulmonary vascular cells [4, 5]. Although
these major advances have improved the understanding of
PAH, more information is needed to evaluate the possible
involvement of additional factors in its pathogenesis. The
authors and others have recently proposed that inflammatory
mechanisms could play a part in the genesis or progression of
PAH. This review will analyse recent information supporting
the relevance of inflammation in animal models [6, 7] and
patients displaying PH.

The role of inflammation and autoimmunity in
pulmonary arterial hypertension
Pulmonary arterial hypertension in connective tissue diseases
PAH is a common complication of systemic inflam-

matory conditions, such as scleroderma and systemic lupus
erythematosus. Pulmonary arterial lesions in the lungs of
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patients suffering from connective tissue diseases (CTD) with
isolated PH are often similar to those found in lungs display-
ing PPH, including plexogenic arteriopathy. Resemblance in
pathological anatomy may suggest an identical pathophysiol-
ogy. Besides medial hypertrophy, intimal "onion bulb" lesions
and characteristic glomoid-like plexiform lesions, COOL et al.
[8] have reported that in patients with scleroderma-related
PH, mononuclear inflammatory cells surround vascular sites
of plexiform growth, but not uninvolved vessels or extra-
vascular lung structures. In addition, TUDER et al. [9] were the
first to identify inflammatory infiltrates in the range of
plexiform lesions in the lungs of patients displaying severe
PPH. This common denominator of PPH and PAH associated
with CTD underlines a possible role for vascular inflamma-
tion in PAH. In in vitro experiments, auto-antibodies from
patients with CTD (anti-Ul-ribonucleoprotein antibodies,
anti-double-stranded deoxyribonucleic acid antibodies) have
been shown to induce up-regulation of immuno-active mole-
cules, such as intercellular adhesion molecule-1, endothelial
leukocycte adhesion molecule-1 and major histocompatibility
complex class II, on human pulmonary endothelial cells, suggest-
ing that such immunitary/inflammatory processes could lead
to a proliferative and inflammatory pulmonary vasculopathy
[10]. Some studies have reported a significant improvement in
PAH associated with CTD after immunosuppressive therapy
[11]. However, this clinical observation still needs to be
confirmed by large prospective studies (see below).

Disturbances of the immune system can be complicated
by pulmonary arterial hypertension

The course of other immunological disturbances, such
as HIV infection [2] or plasma cell dyscrasia with poly-
neuropathy, organomegaly, endocrinopathy, M protein and
skin changes (POEMS syndrome) [12], can be complicated
with significant PAH. Inflammatory action in the range of
affected vessels has been observed in HIV patients with PAH,
although development of severe PAH seems to be unrelated
to the degree of immune deficiency [8]. Nevertheless, in a pre-
vious study it was demonstrated that a group of HIV patients
displaying PAH had significantly higher auto-antibody
levels than a matched HIV non-PAH control group [13].
This could indicate a role for a complicating auto-immunity
status in the evolution of some seropositive patients, trig-
gering the development of PAH and thereby worsening
prognosis [14]. Excessive production of immune mediators
in the rare POEMS syndrome with PH has been reported
by FEINBERG et al. [15]. Increased baseline levels of tumour
necrosing factor (TNF)-a, soluble TNF-receptor type I
(STNF-RI), interleukin (IL)-6, interferon gamma, IL-2,
soluble IL-2 receptor (sIL-2R) and abnormally low levels of
sIL-6R normalised with steroid application and plasmapher-
esis, with an improvement of disease status. As the interplay
of IL-6 and its receptor sIL-6R appears to be relevant to the
pathogenic manifestations of POEMS syndrome with PH, it is
remarkable that excessive IL-1 and -6 serum levels have been
described in pure PPH, as compared with PH secondary to
chronic obstructive pulmonary disease [16]. The authors have
recently reported an exaggerated production of CX3C-
chemokine fractalkine (FKN) and an increased interaction
with its receptor, CX3C-R1, in the lungs of patients suffering
from severe PPH [17].

Primary pulmonary hypertension patients show a pattern
of autoimmunity and inflammation

A large proportion of "pure" PPH patients without
immunodeficiency or other associated systemic diseases

Table 1.—Plasma concentrations of soluble markers in patients
with pulmonary arterial hypertension (PAH) and controls

Molecules PAH Controls p-values
Subjects n 29 26

sCD25 pg-mL™! 2.810.3 1.910.2 0.025
sP-sel pg-mL! 66.6+5.4 52.244.3 0.04
sE-sel ng'mL"! 79.5+6.9 37.313.6 0.0001
SICAM-1 ng'mL" 370.84+27.3 212.6+11.9 0.0001
sVCAM-1 pg'mL! 2.510.1 1.310.1 0.0001
sIL-6 pgrmL" 13.816.0 3.7+1.3 0.0001
vWF U-dL"! 165.6114.5 100.2+7.4 0.0005

Data are presented as mean®SE unless otherwise stated. sCD25: soluble
CD25; sP-sel: soluble P-selectin; sE-sel: soluble E-selectin; sSICAM-1:
soluble ICAM-1; sVCAM-1: soluble VCAM-1; sIL-6: soluble inter-
leukin-6; vVWF: von Willebrand Factor. Table modified from [17].

have evidence of autoimmunity and/or active inflammation,
including detectable levels of circulating antinuclear anti-
bodies [18], elevated serum levels of the pro-inflammatory
cytokines IL-1 and -6 [16], and increased pulmonary expres-
sion of platelet-derived growth factor [19] or macrophage
inflammatory protein-la. [20]. For example, anti-fibrillin-
auto-antibodies (anti-Fbn-1) are commonly found in systemic
sclerosis, calcinosis, Raynaud’s phenomenon, oesophageal
involvement, sclerodactyly, telangiectasia syndrome (CREST)
and mixed connective tissue disease. MORSE et al [21] have
reported elevated frequency of anti-Fbn-1 in patient groups of
adults with PPH (93%, n=75), children with PPH (84%, n=33)
and patients with appetite suppressant-associated PPH (67%,
n=18), as compared with healthy individuals. In addition,
recent data providing evidence for a close association of
PPH and autoimmune thyroid disease, such as Grave's
disease or Hashimoto-thyreoiditis, has revealed the possibility
of an autoimmunitary pathomechanism in PPH [22]. Further
evidence supporting the concept of a systemic inflammatory
component in PPH was recently given by BALABANIAN ef al.
[17], who demonstrated significantly increased plasma levels
of various inflammatory markers in patients with severe PPH,
as compared with normal controls (table 1).

The monocrotaline model

Pathological changes in lungs of patients displaying PAH
do not concern the whole pulmonary arterial tree, but remain
restricted to certain levels of the vessel. The classical hyper-
tensive pulmonary arteriopathy concerns overall muscular
arteries of <500 um in diameter, corresponding to the
subsegmentary arteries and their down-stream colaterals.
Different and characteristic lesions, such as isolated medial
hypertrophy, concentric intimal fibrosis, in situ thrombosis,
pulmonary arteritis and typical plexiform lesions with their
glomoid-like exhuberant endothelial cell proliferation, are
found [23]. Perivascular inflammatory infiltrates with macro-
phages and lymphocytes in the range of occlusive lesions
can be observed in PAH [9]. Endothelial cell dysfunction
with deregulated expression of vasoactive, mitogenic and pro-
inflammatory mediators may be the cause of these changes
[24, 25]. Monocrotaline, a plant-derived toxine, causes endo-
thelial cell injury and subsequently a massive mononuclear
infiltration into the perivascular regions of arterioles and
musculary arteries when injected into rats. These animals
develop severe PH after monocrotaline exposure [26]. Although
typical plexiform lesions are not normally found in mono-
crotaline-induced PH, it is used as a standard model for PAH
and PPH. The important role of inflammation in this model
has led to several studies focusing on immunosuppressive and
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Fig. 1.-Plexiform lesion with strong, mainly lymphocytic (arrows)
inflammatory infiltrate in a lung sample of a patient with severe
primary pulmonary hypertension.

anti-cytokine treatment (see below), and, therefore, raises the
question of how involved inflammatory cascades are in the
installation and evolution of PAH lesions in humans.

The role of chemokines in pulmonary arterial hypertension

Identification of perivascular inflammatory cell infiltrates,
comprised of T- and B-lymphocytes and macrophages, has
supported the concept that inflammatory cells may play a role
in PAH. The involvement of leukocytes, such as macrophages
and lymphocytes, in complex lesions of PPH was initially
described by TUDER et al. [9]. Recent studies by DORFMULLER
et al. [27] have confirmed this observation, stressing the
possible role of perivascular lymphocytic infiltrates. This
inflammatory pattern has been demonstrated in plexiform
lesions, as well as in other vascular lesions of PAH-affected
lungs (fig. 1).

The role of T-lymphocyte recruitment by chemotactic cyto-
kines in PAH has also been previously evaluated. Leukocyte
trafficking involves successive events, including rolling, firm
adhesion and extravasation, in response to a chemoattractant
gradient that may involve chemokines [28]. Chemokines are
soluble, secreted basic proteins that direct the migration of
specific subsets of leukocytes [28, 29]. They play a major role
in the different steps of leukocyte recruitment, including roll-
ing, activation, adherence and extravasation into the inflammed
tissue. The above-mentioned studies by DORFMULLER et al.
[27] and BALABANIAN et al. [17] have attempted to analyse
those chemokine-dependent mechanisms leading to inflam-
matory cell recruitment in the lungs of patients displaying
PAH. FKN/CX3CLI is a unique chemokine, since it exists
in both a soluble form as a chemotactic protein and in a
membrane-anchored form as a cell-adhesion molecule on
endothelial cells [30, 31]. Its actions are mediated by
CX3CRI, a seven transmembrane receptor that is expressed
by monocytes, microglial cells, neurons, natural killer cells,
mast cells and subpopulations of T-lymphocytes [32-37]. FKN
promotes CX3CR1-expressing leukocyte recruitment, but,
unlike other chemokines, it can mediate the rapid-capture,
integrin-independent adhesion and activation of circulating
CX3CR1+ leukocytes under high blood flow [38-40]. Several
recent studies have reported a polymorphism in CX3CRI
associated with a reduced risk of acute coronary artery disease,
suggesting that FKN plays a critical role in monocyte/T-cell
recruitment to the vessel wall [41, 42]. The authors were able
to demonstrate the following: 1) CX3CR1 was upregulated
in circulating CD4+ and CD8+ T-lymphocytes from PAH
patients, as compared with controls; 2) this deregulation of

CX3CR1 expression accounted for the increased sensitivity
of these cells to soluble FKN (sFKN) (fig. 2); 3) the abnor-
mal response of T-lymphocytes to FKN was not the mere
consequence of PH, as it was not present in patients with
PH secondary to chronic thrombembolic PH (CTEPH);
4) elevated sFKN plasma concentrations were measured in
PAH patients, as compared with CTEPH patients and nor-
mal controls; 5) lung samples from PAH patients showed
an increased FKN messenger ribonucleic acid (mRNA)
expression, as compared with controls, and pulmonary artery
endothelial cells from PAH patients expressed FKN (fig. 3).

Regulated upon activation, normal T-cell expressed and
secreted (RANTES) is an important chemoattractant for
monocytes and T-cells [43, 44]. RANTES presumably plays
a key role in a number of arterial inflammatory processes,
such as glomerulonephritis [45], Kawasaki disease [46] and
Takayasu arthritis [47]. In addition, successful antagonisa-
tion of RANTES has been reported in animal models of
inflammatory disease [48-50]. RANTES may also play an
indirect role in PAH through the induction of endothelin-
converting enzyme-1 and endothelin-1, a potent endothelium-
derived factor with strong vasoconstrictive and mitogenic
action [51]. In their recent work, DORFMULLER et al. [27] have
found new evidence for a possible involvement of this potent
mediator in the evolution of PAH. Experiments on patients
and healthy controls showed the following: 1) RANTES
mRNA was detected by competitive reverse transcriptase-
polmerase chain reaction in lung samples from all PAH
patients and controls; 2) the number of RANTES mRNA
copies was significantly elevated in the lungs of PAH patients
as compared with controls (fig. 4); and 3) endothelial cells
were the major source of RANTES, identified by in situ
hybridisation and immunohistochemistry in PAH lung
samples (fig. 5) [27].

Inflammation in pulmonary arterial hypertension: therapy

Immunosupressants in the therapy of pulmonary arterial
hypertension

The effectiveness of corticosteroids and immunosuppres-
sants in the treatement of PAH associated with connective
tissue disorders has been discussed previously. In the absence
of a larger placebo-controlled study, evaluations about
efficacy of such treatment rely on case reports and observa-
tions in smaller groups. Nevertheless, many of these publica-
tions have reported an improvement after treatment, usually
with a combination of immunosuppressants and corticoids
[11, 52]. Interestingly, convincing results with decreasing
mean pulmonary arterial pressures of <28 mmHg have been
frequently reported in patients suffering from systemic lupus
erythematosus [53, 54]. Conversely, treatment in patients with
systemic sclerosis seems to be less effective on PH, suggesting
that different mechanisms may be involved in the patho-
genesis of PH secondary to scleroderma. Usually, corticosteroids
associated with immunosuppressants, such as cyclophos-
phamide in bolus infusion, seem to be the most effective
treatment. However, immunosuppressive protocols vary from
one study to another and comparison is difficult. Lastly, there
can be difficulties in evaluating the effects of immuno-
suppressive therapy alone because of the frequent use of
vasodilator therapy [11]. In conclusion, immunosuppressants
should be considered for patients with CTD and PAH, with
the important exception of scleroderma. Here, strict clinical
and haemodynamical criteria are necessary to evaluate the
efficacy of such a treatment. If there is no clinical and
haemodynamical improvement after 3-6 months of therapy
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Fig. 2.—a—d) Expression and function of CX3CR1 by T-lymphocytes from pulmonary arterial hypertension (PAH) patients. Expression of
CX;CR1 was analysed by flow cytometry in memory (CD45RO+) (a and c¢) and naive (CD45RO-) (b and d) CD4+ and CD8+ T-lymphocytes.
Results are expressed as the proportion of labelled cells for each healthy control (n=7, A) and PAH patient (n=7, @). *: p<0.05; # : p<0.005. e~
h) In the same individuals the function of CX3CR1 was tested by monitoring actin polymerisation (@®: PAH patients, n=7; A: healthy controls,
n=7). Results show the kinetics of actin polymerisation following fractalkine addition, with time. Baseline level, before fractalkine addition, are
represented as 100%. *: p<0.05. Error bars show SEM. Horizontal lines show median values. Figure modified from [17].

Fig. 3.—Fractalkine protein detected by immunohistochemistry in the
endothelium of small muscular pulmonary arteries (lung sample taken
at the time of lung transplantation in a patient suffering from severe

pulmonary arterial hypertension), endothelial proliferation with
obstruction of the vessel and strong endothelial staining. Figure
modified from [27].

then treatment should be stopped because of possible
complications, including infections and neoplasms.

Recent studies on animal models with induced PH have
highlightened two other substances with immunosuppressive

#
300 n
£ n
3
& 200 -
2
< n
o | |
£
@
B 100
=
= .
| 1 |
mlim .
0 n .
Controls PAH

Fig. 4.—Regulated upon activation, normal T-cell expressed and
secreted (RANTES) messenger ribonucleic acid (mRNA) expression
detected by competitive reverse transcriptase-polymerase chain reac-
tion in lung samples from patients suffering from severe pulmonary
arterial hypertension (PAH) and controls. #: p=0.017. Horizontal lines
show mean values. Figure modified from [27].

effects in the treatment of PH. Rapamycin, a macrolide
immunosuppressant currently being used in therapy for
chronic allograft rejection, and triptolide, a herb used in
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Fig. 5.—Regulated upon activation, normal T-cell expressed and
secreted (RANTES) messenger ribonucleic acid expression detected
by in situ hybridisation in the endothelium of small muscular
pulmonary arteries, and to a lesser extent in perivasular cells (lung
sample taken at the time of lung transplantation in a patient suffering
from severe pulmonary arterial hypertension), plexiform lesion with
endothelial and perivascular staining. Figure modified from [27].

traditional chinese medicine to treat rheumatoid arthritis
and other autoimmune diseases, have been tested on rats
being pneumectomised and subsequently treated with
monocrotaline [26, 55]. Both rapamycin and tryptolide
showed significant effects with lower mean pulmonary arterial
pressures, as compared with vehicle-treated controls. As a
morphological correlate to these findings, a significantly less
right ventricular hypertrophy and pulmonary arterial neoin-
timal formation were demonstrated. It is noteworthy that
tryptolide shows anti-inflammatory properties by inhibiting
T-cell activation at the level of cytokine gene transcription [56].

Anti-cytokine treatment in pulmonary arterial hypertension

Cytokine antagonists have been mainly tested on the
monocrotaline rat model. VOELKEL et al. [6] have studied
the role of IL-1, a strong pro-infammatory cytokine, in
monocrotaline-induced PH as compared with chronic hypoxia
PH, showing that IL-1 is excessively produced in the lungs of
rats treated with monocrotaline. Repeated injections of IL-1
receptor antagonist reduced PH and right heart hypertrophy
in the monocrotaline model but not in the chronic hypoxia
model. If studies showing elevated circulating levels of IL-1
and -6 in patients displaying PPH, but not in patients with
PH secondary to COPD are considered, a possible role for
mediators of inflammation in some forms of PH can be
assumed [16]. However, the authors are not aware of any
studies attempting to evaluate anti-cytokine therapies in PH
patients.

Numerous studies on inflammatory diseases and the effects
of anti-cytokine treatment have stressed the importance of
such therapeutic alternatives. Animal model experiments with
RANTES-receptor antagonists (Met-RANTES), show rele-
vant anti-inflammatory properties in the treatment of chronic
allograft nephropathy. In their latest study, SONG et al. [57]
showed that Met-RANTES diminishes the early infiltration
and activation of mononuclear cells in grafts of transplanted
rat kidneys accompanied by a local decrease of IL-1, -2 and
TNF-a, as well as RANTES, and thereby reduces the pace
of chronic allograft nephropathy. Moreover, recent studies
demonstrated the prevention of crescentic glomerulonephritis
in animal models by immunoneutralisation of the FKN-
receptor CX3CR1 [40]. Considering these studies on FKN
and RANTES, and the possible role for these two chemokines

in PAH, further studies on animal models should evaluate a
possible role for anti-cytokine treatment in this condition.

When assessing these different observations, inflammation
and autoimmunity seem to have at least some influence on
the evolution of the disease. The frequent association of
pulmonary arterial hypertension and well-defined inflam-
matory conditions, as well as the presence of complicating
pulmonary arterial hypertension in autoimmunitary distur-
bances, indicate a possible role for inflammatory cascades,
leading to inflammatory infiltrates and remodeling of the
vessel. Latest results from the authors suggest that increased
activation of circulating inflammatory cells in affected indi-
viduals is a primary event, rather than a pure response to the
altered physiological condition of the patient.
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