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ABSTRACT: The understanding of the biochemical defect in cystic fibrosis (CF) has
advanced considerably since discovery of the CF gene in 1989 and characterization of
its product. Studies showing that the abnormality in chloride flux could be corrected by
transfection of wild-type cystic fibrosis transmembrane conductance regulator (CFTR)
complimentary deoxyribonucleic acid (cDNA) have led to gene therapy trials on both
sides of the Atlantic. However, gene therapy as a treatment for CF has yet to be
realized.

Pharmacological manipulation of the biochemical defect may provide an alternative
or complementary approach to treatment. This review will discuss pharmacological
agents in development which could correct the abnormal ion movement.

The mechanisms of action of these pharmacological agents can be divided broadly
into drugs which affect the most common CF mutation, DF508, which increase
trafficking of the mutant CF protein to the apical membrane; drugs which increase
chloride secretion; and drugs which reduce sodium reabsorption across the apical
membrane.

Treatment options for cystic fibrosis have developed rapidly since discovery of the
cystic fibrosis gene over a decade ago. The targeting of specific therapies for particular
cystic fibrosis genotypes and the use of combination treatments of chloride channel
openers with sodium channel blockers are likely to be key advances in the next decade.
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Cystic fibrosis (CF) is caused by mutations of the
CF gene on chromosome 7, which codes for the cystic
fibrosis transmembrane conductance regulator protein
(CFTR). CFTR is a cyclic adenosine monophosphate
(cAMP) regulated chloride channel which regulates
the epithelial sodium channel (ENaC) and it may have
other functions including the transport of adenosine
triphosphate (ATP) [1]. More than 850 CF mutations
are currently recognized. These mutations cause
defects in CFTR trafficking and/or activation leading
to reduced epithelial chloride secretion by CFTR and
excessive sodium absorption through ENaC [2]. The
mechanism by which abnormal ion transport causes
CF lung disease is controversial, with two theories
predominating [3] (fig. 1). The isotonic volume deple-
tion theory (figs. 1a and c) suggests that isotonic
absorption of salt and water from the apical
membrane in CF airway epithelium occurs as a
result of increased ENaC activity [4]. This leads to
volume depletion of the airway surface liquid (ASL),
dehydration of the mucus layer and formation of
"mucus plaques" which adhere to the airway epithe-
lium leading to bacterial colonization. An alternative
theory, the hypotonic salt hypothesis (figs. 1b and d),
suggests that the pathogenesis of CF lung disease is
linked to the deactivation of cationic peptides such as
b-defensins [5] which are produced by airway epithe-
lium and function optimally in hypotonic solutions. In

CF, the ASL is less hypotonic thereby impairing
b-defensin function and promoting bacterial coloniza-
tion. Currently there is increasing evidence to support
the isotonic model [6] but both may play a role [3];
however, normalization of the ion transport defect is
thought to be the key to a cure for CF lung disease.

Strategies aimed at increasing chloride secretion

A number of pharmacological agents have been
studied that increase chloride secretion in vitro.
Figure 2 and table 1 give an overview of the different
agents and proposed mechanism of action as dis-
cussed later in the text.

Cystic fibrosis transmembrane conductance regulator
protein trafficking

The most common CF mutation is DF508, caused
by a deletion of a phenylalanine residue at amino acid
position 508. The resulting conformational change in
CFTR makes it vulnerable to degradation within the
endoplasmic reticulum (ER) [7]. Nascent polypeptides
fail to reach the apical membrane, resulting in
the absence of a functional response. Attempts to
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overcome the defect in the DF508 mutation involve
increasing CFTR trafficking.

Chemical chaperones

The observation that low temperature induced a
proportion of cultured fibroblasts to show normal
maturation of DF508-CFTR [8, 9] lead to the search
for chemical entities with similar properties. The first

chemical chaperone to be studied was glycerol [9, 8],
which increased expression of fully glycosylated
DF508 protein at the plasma membrane of cultured
mammary carcinoma cells [9]. However, an open
parallel group study in CF subjects, using two doses of
topical glycerol, showed no effect on nasal potential
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Fig. 2. – Potential targets for pharmacological manipulation of chloride channel activation. The mechanisms are indicated by the follow-
ing numbers: 1: increase in trafficking; 2: decrease in ubiquitination; 3: phosphodiesterase inhibition; 4: adenyl cyclase activation; 5: direct
activation of cystic fibrosis transmembrane conductance regulator (CFTR); 6: tyrosine kinase activation; 7: protein phosphatase inhibition;
8: cyclic adenosine monophosphate (cAMP) regulation of CFTR; 9: activation of other chloride channels; 10: calcium dependant involving
CaMkII. AMP: adenosine monophosphate; ATP: adenosine triphosphate; ADP: adenosine diphosphate; PKA: protein kinase; mRNA:
messenger ribonucleic acid.

Mucus

Apical

Baso-
lateral

Epithelium

ASL

P. aeruginosa

Defensins

ASL
Hypotonic

a) b)

NormalNormal

Mucus plaques

ASL
Volume

ASL
Hypotonic

c) d)

Cystic fibrosisCystic fibrosis

Fig. 1. – The Salt Hypotheses. ASL: airway surface liquid; P.
aeuruginosa: Pseudomonas aeruginosa.

Table 1. – Proposed mechanisms for different pharma-
cological agents

Pharmacological
agent

Proposed mechanism

4 PBA Increase in trafficking
Decrease in ubiquitination

Glycerol Increase in trafficking
IBMX Phosphodiesterase inhibition

Direct activation CFTR
Forskolin Adenyl cyclase activation
Milrinane Phosphodiesterase inhibition plus

adenyl cyclase activation
Amrinone Phosphodiesterase inhibition plus

adenyl cyclase activation
CPX Phosphodiesterase inhibition

Direct activation CFTR
Genistein Tyrosine kinase activation

Protein phosphatase inhibition
Direct activation CFTR

CNP cGMP regulation of CFTR
UTP, ATP Activation of other chloride channels
Calcium ATPase

inhibitors
Decrease in ubiquitination
Calcium dependant involving CaMKII
Activation of other chloride channels

4-PBA: sodium 4-phenylbutyrase; IBMX: 1-methyl-3-isobutyl-
xanthine; CPX: 8-cyclo-pentyl-1,3-dipropylxanthine; CNP:
C-type natriuretic peptide; UTP: uridine triphosphase; ATP:
adenosine triphosphate; ATPase: adenosine triphosphatase;
CFTR: cystic fibrosis transmembrane conductance regulator
protein.
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difference (NPD) in 11 DF508 homozygotes [10],
suggesting glycerol is unlikely to be clinically useful.
Other compounds acting in a similar manner may
prove more effective, such as Trimethylamine N-oxide
(TMAO), which increases chloride efflux in CF
trachea epithelial (CFTEo) cells, a DF508 expressing
cell line [10]. This area is likely to expand rapidly in
the future.

Sodium 4-phenylbutyrate

Butyric acid and its analogues have been shown to
upregulate CFTR-messenger ribonucleic acid
(mRNA) in C127 cells expressing DF508 [11, 12].
Butyrate itself is short-acting and toxic, but its
analogue, sodium 4-phenylbutyrate (4-PBA), shows
more promise. Forskolin-induced chloride secretion in
IB3-1 cells expressing DF508/W1282X, and in primary
human nasal epithelium, was increased by 4-PBA [13].
Although these agents increase CFTR-mRNA expres-
sion, they may also have other actions. The ubiqui-
tination protein Hsc70 in IB3-1 cells and human
bronchial epithelial cells was downregulated by 4-
PBA. This would be expected to increase CFTR
trafficking by reducing tagging of mutant protein for
degradation, thereby allowing more DF508-CFTR
protein to reach the apical membrane [14].

A pilot study of 4-PBA in cystic fibrosis patients in
vivo showed partial restoration in nasal epithelia
CFTR function in 18 DF508 patients treated for 1
week with oral 4-PBA or placebo (nine in each group)
[15]. Longer term, larger studies of more potent
4-PBA analogues are needed.

Treatments aimed at increasing chloride currents

Phosphodiesterase inhibitors

Mutant forms of CFTR can be activated if
stimulated with high levels of phosphodiesterase
(PDE) inhibitors [16]. Xenopus oocytes injected with
wild-type or mutant CFTR required five times as
much xanthine 1-methyl-3-isobutyl-xanthine (IBMX),
a nonselective PDE inhibitor, to stimulate chloride
secretion, compared with wild-type. Stimulation only
occurred in the presence of forskolin (an adenyl
cyclase activator) [16]. However, results with IBMX
have been conflicting. In normal and CF airway
epithelium, high doses of IBMX and forskolin failed
to increase chloride efflux, thus inhibiting chloride
secretion in primary cultures from normal patients
[17, 18]

Another nonselective PDE inhibitor is 8-cyclo-
pentyl-1, 3-dipropylxanthine (CPX). CPX increased
chloride channel activation of CFPAC-1 or NIH 3T3
cells expressing DF508 CFTR, but not in cells
expressing wild-type CFTR [19]. Similar results were
seen in the human airway cell line IB3 derived from a
DF508/W1282X CF patient [20]. In contrast, CPX
alone had no effect on wild-type or mutant CFTR in
mouse mammary epithelial cells (Ca127 cells),
although it did potentiate the forskolin response in
mutant cells [21].

PDE consists of a family of enzymes which differ in
their selectivity for, and activation by, cAMP and
cyclic guanosine monophosphate (cGMP). Whilst
IBMX and CPX are nonselective PDE inhibitors,
studies with cAMP selective PDE inhibitors have been
more promising. Type III inhibitors, milrinone and
amrinone, are more potent activators of chloride
efflux in airway epithelial cells expressing wild-type
CFTR than either IBMX or type IV (rolipram)
inhibitors [22]. Milrinone and amrinone stimulated
chloride efflux in wild-type Calu-3 and 16 human
bronchial epithelial (HBE) cells without the addition
of adenyl cyclase activators [23]. However, adenyl
cyclase activation, in addition to milrinone, was
required for stimulation of mutant CFTR (trans-
formed CF nasal polyp cells expressing DF508/DF508)
or murine nasal epithelium in vivo [18, 22, 23].

The mechanism of action of PDE inhibitors is
contentious, as no correlation was found between the
increases in cAMP and the degree of correction of
chloride efflux in some studies [18, 21, 22]. This could
reflect compartmentalization of PDE activity within
epithelial cells, such that total cAMP levels do not
reflect membrane cAMP [22]. Alternatively, non-PDE
mechanisms may be involved including adenosine
antagonism or a direct effect on CFTR. Adenosine
antagonism seems unlikely because the potency of
these agents as adenosine antagonists correlates
poorly with CFTR opening [19, 20, 24]. A more
attractive suggestion is that PDE inhibitors have a
direct effect on CFTR through binding to the first
nucleotide binding domain (NFB-1), the site of the
DF508 mutation [25, 26]. This hypothesis is supported
by the rank order of potency for binding of different
xanthines (DA-CPXwDAXwCPXwcaffeinewade-
nosinwIBMX) to NBF-1 which parallels the action
of these compounds on chloride channel opening [26].

Data on the PDE inhibitors in vivo are limited.
Topical milrinone had no effect on NPD in the
presence of amiloride, isoprenaline or ATP in low
chloride solution [27].

Genistein

Genistein, a tyrosine kinase inhibitor, increased
CFTR channel activity in wild-type CFTR and in Hi-
5 insect cells which transiently express CFTR in the
presence of forskolin [28]. The mechanism of action of
genistein is unclear, but possibilities include tyrosine
and protein phosphatase inhibition, direct interaction
with the CFTR protein, or inhibition of topoisome-
rases [29, 30]. Genistein also stimulates sodium
absorption in the human CF airway [31]. As genistein
affects several cellular processes and its mechanism of
action is unclear, it may not prove useful in CF
therapy.

Cyclic guanosine-3959-monophosphate

cGMP is produced by guanylate cyclases (GCs)
which exist in soluble and particulate forms. Soluble
GCs are activated by nitric oxide and related
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compounds, whereas particulate GCs are natriuretic
peptide receptors. Both soluble and particulate GCs
are abundant in airway epithelial cells [32]. cGMP has
been shown to influence CFTR activity but the
mechanism is unclear. Potential mechanisms include
direct phosphorylation of CFTR by cGMP-depen-
dant protein kinase (PKG), or by cGMP acting via
phosphodiesterases which hydrolyse cAMP. In return,
increased cAMP then activates cAMP-dependant
protein kinases (PKAs) which phosphorylate CFTR.

Studies in Calu-3 cells, (which express high levels of
CFTR) and CF-T43 cells (expressing DF508), showed
that C-type natriuretic peptide (CNP), a ligand for
type C particulate GC, activated wild-type and
mutant CFTR through PKA [33]. Cells expressing
the CF mutant only showed activation when CNP was
combined with isoprenaline, and wild-type cells
showed a greater response than CF cells. CNP
increased CFTR-dependant chloride efflux in CF
mice in vivo [34] suggesting that studies with CNP in
humans may be warranted.

Triphosphate nucleotides

The outwardly rectifying chloride channel (ORCC)
is important in airway chloride secretion and is
activated by CFTR [35]. PKA activation of CFTR
causes ATP movement across the cell membrane. ATP
then binds to P2 receptors, which activate ORCC. The
mechanisms of ATP transport are unclear but may
involve CFTR acting as a channel to directly
transport ATP or by regulating ATP transport
through an unidentified channel [1]. The defective
regulation of ORCC in CF subjects can be overcome
using topical ATP or uridine triphosphate (UTP) [36,
37]; however, longer acting P2Y2 receptor agonists are
being evaluated. INS365 is safe in doses #100 mg in
healthy volunteers or in single doses #80 mg in CF
subjects, but data on efficacy are awaited [38].

Calcium adenosine triphosphatase inhibitors

A number of epithelial chloride channels are
calcium dependent. Therefore, strategies which
increase calcium release or reduce calcium re-uptake
may be beneficial. Calcium adenosine triphosphatase
(ATPase) inhibitors such as thapsigargin, cyclopiazo-
nic acid and 2,5-di-(tert-butyl)-1,4-hydroquinone
(DBHQ) inhibit Ca2z re-uptake by intracellular
stores and increase cytosolic free Ca2z. This may
increase chloride secretion via a calcium-regulated
chloride signalling pathway [1]. Alternatively, traffick-
ing may increase by reducing the activity of calcium
dependant proteins such as calnexin and uridine
diphosphate (UDP) glucose: glycoprotein glycocyl
transferase (UGGT), which are involved in retaining
misfolded DF508-CFTR in the ER. Preliminary data
in CFPAC-1 cells showed that altering intraluminal
ER calcium with thapsigargin allowed DF508-CFTR
to be released from the ER while functioning at the
apical membrane [39]. Although calcium ATPase

inhibitors could theoretically be of use in DF508,
their toxicity is likely to preclude use in patients.

Treatments for stop mutations

Aminoglycosides

Aminoglycosides have been used to treat stop
mutations, which are class 1 mutants with their
premature termination of CFTR-mRNA translation
producing truncated, nonfunctional CFTR. Although
these are common amongst Ashkenazi Jews [40], they
affect only a small percentage of CF patients world-
wide [41]. Partial functional correction of two CF stop
mutations was achieved in HeLa cells using the
aminoglycoside G-418 [41]. Gentamicin and tobrami-
cin had weaker effects but did not alter chloride
channel activity. IB3 cells, heterozygous for W1282X
treated with G418 or gentamicin, showed increased
cAMP mediated current, although possibly via the
ORCC rather than CFTR [42]. Beneficial changes in
NPD were reported with topical gentamicin (0.3%
t.d.s) for 14 days in nine patients homozygous for stop
mutations [43]. Larger randomized controlled trials
are needed to confirm these findings.

Strategies aimed at reducing sodium absorption

An alternative or complementary approach is to
target the increased sodium reabsorption. ENaC is
responsible for the increased sodium absorption in CF
airway epithelia as a result of abnormal regulation by
defective CFTR. CFTR plays a central role in the
regulation of ENaC and other ion channels. Figure 3
shows how these other ion channels are affected in CF
and how they can be manipulated pharmacologically.

Amiloride and its analogues

Attempts to reduce sodium reabsorption in airway
epithelium have concentrated on apical ENaC inhibi-
tors. Amiloride inhibits several epithelial sodium
transport processes including ENaC and is a potent
inhibitor of sodium transport in vitro and in vivo [44,
45]. Although short-term topical amiloride adminis-
tration blocks sodium transport across nasal epithelia
in normal and CF subjects [46, 47], three placebo-
controlled crossover studies of nebulized amiloride
show conflicting results [48 – 50]. A 25-week North
American study [48] showed a reduction in lung
function decline in 18 CF subjects, whereas a 6-month
UK study showed no effect [49]. Lung function was
unaffected when amiloride was added to inpatient
treatment of pulmonary exacerbations in 27 CF
patients [50].

The lack of efficacy of amiloride in vivo may be due
to its short duration of action [51, 52]. Amiloride is
cleared rapidly from the airways and its effect on
lower airway potential difference lasts for only 30 min
[53]. Thus, even with repeated dosing, amiloride
would only block sodium reabsorption for a short
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time [54]. Therefore, longer acting sodium channel
blockers may prove more effective.

Benzamil, a benzyl substituted amiloride analogue,
is a more potent and longer acting sodium channel
inhibitor than amiloride in cultured human nasal
epithelium [55]. Benzamil had a longer duration of
action on NPD than amiloride in an open, parallel
group study of CF subjects [56]. A randomized,
placebo-controlled, crossover study in 10 CF subjects
showed similar results [57] with an 8-h duration of
action. Although Benzamil is promising as a long-
acting sodium channel inhibitor, studies on its long-
term efficacy and toxicity in the lung are required.

Sodium/potassium-adenosine triphosphatase inhibitors

Sodium absorption through the basolateral sodium-
potassium-adenosine triphosphatase (NazKz-
ATPase) is also increased in CF [58, 59]. The Naz/
Kz-ATPase can be inhibited by cardiac glycosides
such as ouabain and digoxin. Ouabain inhibits sodium
reabsorption in intact epithelium strips in several
species including man [60, 61] and intravenous
ouabain reduces NPD in the dog in vivo [44].
However, two double-blind, placebo-controlled,
crossover studies showed no effect on NPD for

either topically applied ouabain or oral digoxin
given to CF patients over 2 weeks [59]. This suggests
that Naz/Kz-ATPase inhibitors, at nontoxic doses,
do not achieve sufficient inhibition of Naz/Kz-
ATPase to be of therapeutic use.

Loperamide

Loperamide, an opiod receptor agonist, inhibited
sodium ion flux in the rat small bowel in vitro [62].
Although loperamide reduced NPD in CF mouse
nasal epithelium in vivo [63], preliminary data in
humans show that loperamide is less potent than
amiloride in inhibiting NPD in CF suggesting that it is
unlikely to be clinically useful [64].

Treatment combinations

Combining a sodium channel blocker with a
chloride channel opener, thus mimicking normal
conditions, seems an attractive option for the treat-
ment of CF. To date, there is little data in vivo on this
approach. A murine study showed dose-dependent
NPD changes with UTP and amiloride, which
suggests chloride secretion [65]. A preliminary report
[66] showed an improvement in mucociliary clearance
(MCC) after short-term treatment with aerosolized
UTP and amiloride in 12 CF and 10 normal subjects.
Future studies are likely to investigate combinations
of chloride channel openers and sodium channel
blockers as well as combinations of chloride channel
openers which involve different pathways (e.g. traf-
ficking compounds combined with drugs which
directly activate CFTR).

Pharmacogenetics

Although the study of pharmacogenetics is in its
infancy, it may have a role in cystic fibrosis. Genetic
factors which potentially play a role in determining
treatment responses in diseases such as asthma have
been identified, although the clinical application of
such technology has yet to be developed [67]. In CF,
determination of the CF genotype has been available
for many years and has mainly been used for
diagnostic purposes. However, the application of
genotyping in order to determine pharmacological
treatment is an exciting concept. The major role of
pharmacogenetics in CF is likely to be in the
development of drugs targeting DF508, the mutation
most commonly seen in the CF population. The recent
development of high throughput screening provides
rapid, repeatable assays capable of detecting cell
chloride permeability [68]. This technology will be
used to rapidly screen libraries of compounds in order
to detect potential trafficking drugs of the future, and
will have great impact on the efficacy of such drugs as
well as their speed of development. Pharmacogenetics
will also have an impact on other CF mutations such as
the use of aminoglycosides for stop mutations, parti-
cularly in geographical areas where such geneotypes
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are common. However the use of pharmacogenetics
for other CF genotypes may be limited on pharma-
coeconomic grounds.

Conclusions

There are a number of pharmacological agents in
development aimed at correcting the electrophysiolo-
gical defect seen in CF airways. These agents are likely
to become increasingly specific, targeting patients with
particular genotypes. Clinical trials have incorporated
4-PBA, probably the most advanced chloride secreta-
gogue in development. It has the advantage of being
effective as a single agent, unlike the PDE inhibitors
which require concomitant treatment with adenyl
cyclase activators [16, 19, 30]. However, 4-PBA and
other trafficking drugs appear to increase amiloride
sensitive sodium transport [11, 23]. Similarly, studies
of UTP and gene therapy have shown that although
these approaches produce a degree of correction of the
chloride current, they do not correct sodium reab-
sorption [15, 36, 69]. This suggests that there may be
added benefit in giving these agents in combination
with sodium channel blockers. Although clinical
studies with amiloride have been disappointing [48,
49, 50] the use of longer acting sodium channel
blockers, such as benzamil, may prove more bene-
ficial.

Pharmacological treatments to correct the ion
transport defect in cystic fibrosis have emerged over
the last decade with expanding knowledge of the
structure and function of cystic fibrosis transmem-
brane conductance regulator. Perhaps the combina-
tion of drugs that correct different aspects of cystic
fibrosis transmembrane conductance regulator func-
tion will be the way forward in the next decade.
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