Volume and time dependence of respiratory system mechanics in normal anaesthetized paralysed humans

E. D’Angelo*, M. Tavola**, J. Milic-Emili†

ABSTRACT: The purpose of the present investigation was to assess the effect of large tidal volumes and mean lung volumes on the viscoelastic properties of the respiratory system in normal humans; and to verify if in this case the results could be satisfactorily described by a simple linear viscoelastic model of the respiratory system.

Twenty-eight subjects (7 females), aged 14–28 yrs, were studied before orthopaedic surgery on the lower limbs. None were obese, or had clinical evidence of cardiopulmonary disease. The interrupter conductance and the viscoelastic constants of the respiratory system were assessed using the rapid end-inspiratory airway occlusion method during mechanical ventilation with tidal volumes up to 3 L and applied end-expiratory pressures up to 23 cmH2O.

It was found that the interrupter conductance increased linearly with lung volume over a larger range than used previously; and the viscoelastic resistance and time constant did not change over the entire range of tidal volumes and end-expiratory pressures studied.

In conclusion, in normal anaesthetized, paralysed subjects a simple linear viscoelastic model satisfactorily described the viscoelastic behaviour of the respiratory system over the whole range of volume studied.

The rapid end-inspiratory occlusion method has been used extensively to assess respiratory mechanics both under normal and pathological conditions. In normal anaesthetized, paralysed, mechanically ventilated humans, a large proportion of the total respiratory system resistance was found to reflect pressure dissipation within the pulmonary and chest wall tissues, i.e. tissue resistance, and could be satisfactorily explained by a simple linear viscoelastic model of the respiratory system [1–3].

While it has long been recognized that airway resistance decreases progressively with increasing lung volume [4], the effect of large volume changes on the resistance of lung and chest wall tissues has, as yet, not been investigated in normal humans. In patients with acute respiratory distress syndrome (ARDS), however, tissue resistance has been found to increase markedly by augmenting lung volume with application of positive end-expiratory pressure (PEEP) up to 15 cmH2O [5]. Under these conditions, the simple linear viscoelastic model of the respiratory system failed to fully describe the observed results of respiratory mechanics. In the absence of comparable studies in normal subjects, it remains to be seen whether this is the consequence of changes in tissue viscoelastic behavior due to lung injury or to excessive distension of the functional lung units.

The purpose of the present investigation was to assess in normal anaesthetized, paralysed humans the effect of large tidal volumes and mean lung volumes (PEEP up to 23 cmH2O) on the viscoelastic properties of the respiratory system, and to verify if in these cases the results could still be satisfactorily described by a simple linear viscoelastic model [1–3].

Materials and methods

Twenty-eight patients (7 females) undergoing general anaesthesia for orthopaedic surgery on the lower limbs were studied before the intervention. Their mean±sd age, weight, and height were 20±4 yrs (range: 14–28), 63.8±8.5 kg, and 172±9 cm, respectively. None were obese, or had a history or clinical evidence of cardiopulmonary disease.

The investigation was approved by the institutional ethics committee and informed consent was given by each subject.

Thirty to forty minutes prior to anaesthesia, the subjects were premedicated with diazepam (0.2 mg·kg⁻¹ intramuscular). Anaesthesia and muscle relaxation were induced with intravenous thiopental sodium (5–7 mg·kg⁻¹) and pancuronium bromide (0.1 mg·kg⁻¹), respectively. The subjects were transorally intubated with a Mallinckrodt cuffed endotracheal tube (ET tube; 8–8.5 mm internal diameter (ID), 30–36 cm long) and mechanically ventilated in supine position (Siemens 900C Servoventilator, Berlin, Germany). Anaesthesia was maintained with isoflurane (0.8–1% in 60% N₂O, balance O₂) and muscle relaxation with additional aliquots of pancuronium bromide (0.04 mg·kg⁻¹).
Flow (F') was measured with a heated pneumotachograph (Fleisch no. 2, Lausanne, Switzerland) connected to the breathing circuit via a cone and to a differential pressure transducer (Statham 270, Hewlett-Packard, Cupertino, CA, USA). The response of the pneumotachograph, which was calibrated with the experimental gas mixture, was linear over the experimental range of flows. Tracheal pressure (P_t) was measured with a pressure transducer (Hewlett-Packard 1290A) connected to a polyethylene catheter (1.5 mm ID, 50 cm long) with two or three side holes near its closed tip, which jetted 3–4 cm out from the ET tube into the trachea. Oesophageal pressure (P_{oes}) was measured with a similar transducer connected to a thin walled latex balloon (8 cm long) filled with 0.5–1 mL of air through a polyethylene catheter (2 mm ID, 120 cm long). Transpulmonary pressure (P_{tr}) was obtained as $P_{oes} - P_t$. With this recording system, pressure measurements were not affected by phase shift or alteration in amplitude up to 20 Hz. The above variables were recorded both on a four channel pen recorder (Hewlett-Packard 7754B; Hewlett Packard) and sampled at 200 Hz by a 12-bit analogue-to-digital converter to be stored on a personal computer for subsequent data analysis. Changes in lung volume were then obtained by numerical integration of the digitized flow signal.

Tests were carried out both with zero PEEP (ZEEP) and PEEP; the latter was applied by water immersion of a large tube connected to the inspiratory port of the ventilator. Two levels of PEEP were used: 9±2 and 23±2 cmH$_2$O. The changes in end-expiratory lung volume with PEEP were computed as the mean of the changes measured at the onset of its administration and after its removal. With the higher PEEP level, the changes in volume were 0.1–0.2 L larger after the removal of PEEP (p<0.02), whereas no significant difference was observed with the lower PEEP level.

The heart rate (range: 80–121 min$^{-1}$), systemic arterial pressure (range: 100–124 mmHg) and oxygen saturation (>97%) were continuously monitored together with the electro-cardiogram. The end-tidal carbon dioxide tension in arterial blood (P_{a,CO_2}) (Datex Normocap, Datex, Helsinki, Finland) was similar with ZEEP and the lower level of PEEP (37±2 versus 37±2 mmHg) but was significantly lower (32±3 mmHg; p<0.02) at the higher PEEP level.

Procedure and data analysis

The baseline ventilator settings consisted of a fixed tidal volume (V_t range: 0.47–0.76 L), and fixed respiratory frequency which ranged 10–13 min$^{-1}$ among subjects and was chosen to maintain normocapnia while breathing on ZEEP. The subjects were connected to the ventilator by a single length of standard low-compliance tubing (2 cm ID, 110 cm long), and the humidifier was removed. A normally open solenoid valve (closing time 10–15 ms), placed between the Y connector and the pneumotachograph, could be activated to produce an end-inspiratory pause (5–6 s in duration). Tests were accepted if 4–5 s after occluding the airways at end-inspiration, P_t remained essentially constant, taking into account the small change expected from continuing gas exchange [6, 7]. Intrinsic PEEP was absent in all subjects, as flow became nil at end-expiration.

Two different procedures were carried out: 1) in 13 subjects on ZEEP, test breaths were performed by changing intermittently both V', from basal setting to values ranging 0.2–1.3 L s$^{-1}$, and V_t, from basal setting to values ranging 0.44–3.3 L; and 2) in 15 subjects on ZEEP and two levels of PEEP, test breaths were performed by changing V' intermittently from basal setting to values ranging 0.2–1.3 L s$^{-1}$ while keeping V_t constant (0.61±0.05 L).

Respiratory mechanics was assessed by means of the rapid airway occlusion method, as previously described in detail [1, 2]. Briefly, end-inspiratory airway occlusions were followed by a rapid initial drop in P_t (P_{max}-P_t), and by a slow decay of both P_t and P_{oes} (P_t-P_{oes}) to an apparent plateau value. These plateau pressures, computed as the mean values recorded during the interval 4–5 s after the occlusion, were taken to represent the quasi-static endinspiratory elastic recoil pressure of the respiratory system (P_{rs}) and chest wall (P_{cw}), respectively. The rapid pressure drops in P_t divided by the flow preceding the occlusion yield the interrupter resistance of the respiratory system (R_{rs}). The slow pressure drops in P_t and P_{oes} divided by the flow preceding the occlusion yield the additional resistance of the respiratory system (ΔR_{rs}) and chest wall (ΔR_{cw}), respectively. Viscoelastic parameters were computed by fitting the values of ΔR measured for different durations of inflation (t_t) and t with the function [1].

\[
\Delta R = R_{visc} \times (1 - e^{-t/t_{visc}})
\]

where R_{visc} and t_{visc} are viscoelastic resistance and time constant, respectively, viscoelastic elastance (E_{visc}) being R_{visc}/t_{visc}. Finally, P_{rs} and P_{cw} were divided by the inflation volume to obtain the quasi-static elastances of the respiratory system (E_{rs}) and chest wall (E_{cw}), respectively. For the lung the various parameters were computed as difference between the corresponding values pertaining to the respiratory system and chest wall.

Values are mean±SD, unless stated otherwise. Regression analysis was performed using the least-square method and analysis of variance. Comparison was made by means of a paired t-test, and p<0.05 was accepted as statistically significant.

Results

Effects of changes in tidal volume

Figure 1 shows the average static inflation V-P curves of lung and chest wall obtained by changing intermittently V_t during baseline ventilation on ZEEP in 13 subjects. Pressures are expressed as changes relative to the end-expiratory values on ZEEP. Since on ZEEP static end-expiratory P_t was always nil, the sum of the lung and chest wall pressures at any given volume represents the pressure of the respiratory system. The inflation V-P curve of the lung was S-shaped, the curvature at low AV being mainly due to the fact that three of the 13 subjects exhibited a clearcut "knee" [8].

The interrupter resistance of the respiratory system did not change significantly with V': hence, for a given subject and V_t, the interrupter conductance ($G_{int,rs} = 1/\Delta R_{int}$) could be represented by a single value. Figure 2 shows the relationship of $G_{int,rs}$ to the inflation volumes at which $G_{int,rs}$ was measured. A significant (p<0.01) linear
relationship ($G_{int,rs}=a+b\Delta V$) was obtained. The average values of the coefficients a and b of the 13 subjects were 0.63 ± 0.17 L cmH$_2$O$^{-1}$s$^{-1}$ and 0.12 ± 0.08 cmH$_2$O$^{-1}$s$^{-1}$, respectively. On an individual basis, that relationship was significant in all but three subjects in whom $G_{int,rs}$ decreased at the highest inflation volume.

Figure 3 depicts the relationships of ΔR_{rs}, ΔR_{rs} and ΔR_{rs} to t obtained in one subject. A unique function in the form of Equation 1 adequately described the data obtained with different V_T ($p<0.001$), allowing computation of R_{visc} and t_{visc}. The average data from the 10 subjects are shown in figure 3, while their mean values of R_{visc} and t_{visc} for the respiratory system, lung, and chest wall are reported in table 1. In the three subjects who exhibited a clearcut “knee” at low volumes, t_{visc} was independent of V_T (table 1).

Effects of changes in end-expiratory volume

In 15 subjects, application of a PEEP of 9 and 23 cmH$_2$O increased the end-expiratory lung volume by 0.61 ± 0.10 and 2.08 ± 0.29 L, respectively. Figure 5 shows the average quasi-static V-P curves of lung and chest wall obtained with fixed V_T (0.61 ± 0.05 L) on ZEEP and the two levels of PEEP. The average values of quasi-static elastance of respiratory system ($E_{st,rs}$), lung ($E_{st,L}$), and chest wall ($E_{st,w}$) over the fixed V_T at different levels of PEEP are reported in table 2. While $E_{st,w}$ increased with increasing PEEP, $E_{st,rs}$ and $E_{st,L}$ decreased with the lower PEEP, but increased with the higher PEEP.

Both on ZEEP and PEEP, $R_{int,rs}$ was independent of V_T. With PEEP $R_{int,rs}$ decreased relative to ZEEP (table 2). Figure 2 depicts the relationship of $G_{int,rs}$ to the end-inspiratory lung volume at which conductance was measured. A significant ($p<0.01$) linear relationship ($G_{int,rs}=a+b\Delta V$) was obtained. The average values of the coefficients a (0.68 ± 0.30 L cmH$_2$O$^{-1}$s$^{-1}$) and b (0.14 ± 0.10 cmH$_2$O$^{-1}$s$^{-1}$) were similar to those obtained in the 13
subjects ventilated on ZEEP with different V_T. On an individual basis, that relationship was significant in all but four subjects. In the latter individuals $G_{int,rs}$ increased between ZEEP and the lower PEEP, but decreased with the larger PEEP.

Figure 6 depicts the relationships of $ΔR_{rs}$, $ΔR_{w}$ and $ΔR_{L}$ to t_I obtained in one subject ventilated on ZEEP with various tidal volumes (V_T; $0.54; 1.56; 2.32; and 3.21$. The lung inflation $P-V$ curve of this subject showed a clearcut "knee" at low volumes. Data pertaining to the respiratory system and lung obtained with the lowest V_T (0.54) and with the other three V_T were fitted separately to Equation 1 to derive R_{visc} and $τ_{visc}$ (mean±SE), whereas all data pertaining to chest wall could be fitted to a unique function. For both respiratory system and lung, $τ_{visc}$ did not differ significantly with inflation volume, whereas R_{visc} did, ($R_{visc}=6.42±0.18$ and $5.7±0.08$ and $τ_{visc}=1.48±0.09$ and $1.59±0.09$ for $ΔR_{rs}$, $R_{visc}=2.18±0.04$ for $ΔR_{w}$, and $R_{visc}=4.22±0.21$ and $3.48±0.08$ for $ΔR_{L}$).

Table 1. – Viscoelastic resistance (R_{visc}) and time constant ($τ_{visc}$) of respiratory system, lung, and chest wall in anaesthetized, paralysed subjects ventilated with various tidal volumes (V_T) at zero end-expiratory pressure

<table>
<thead>
<tr>
<th>Subjects n</th>
<th>V_T L</th>
<th>R_{visc} cmH$_2$O·s·L$^{-1}$</th>
<th>$τ_{visc}$</th>
<th>R_{visc} cmH$_2$O·s·L$^{-1}$</th>
<th>$τ_{visc}$</th>
<th>R_{visc} cmH$_2$O·s·L$^{-1}$</th>
<th>$τ_{visc}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory system</td>
<td></td>
<td></td>
<td></td>
<td>Lung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>P_{EE}</td>
<td></td>
<td></td>
<td>R_{visc} cmH$_2$O·s·L$^{-1}$</td>
<td>$τ_{visc}$</td>
<td>R_{visc} cmH$_2$O·s·L$^{-1}$</td>
<td>$τ_{visc}$</td>
</tr>
<tr>
<td>10</td>
<td>0.47–3.10</td>
<td>5.97±0.80</td>
<td>1.29±0.38</td>
<td>3.56±0.53</td>
<td>1.37±0.49</td>
<td>2.51±0.85</td>
<td>1.20±0.23</td>
</tr>
<tr>
<td>3</td>
<td>0.48–0.56</td>
<td>6.97±0.48</td>
<td>1.58±0.19</td>
<td>4.35±0.24</td>
<td>1.54±0.38</td>
<td>2.65±0.33</td>
<td>1.36±0.15</td>
</tr>
<tr>
<td>3</td>
<td>0.80–3.13</td>
<td>6.04±0.30*</td>
<td>1.67±0.32</td>
<td>3.63±0.20*</td>
<td>1.65±0.41</td>
<td>2.40±0.31</td>
<td>1.36±0.09</td>
</tr>
</tbody>
</table>

Values presented as mean±SD and refer to 10 subjects in whom R_{visc} was independent of V_T and to three subjects in whom this was in part not the case. *: different from lower V_T (p<0.05).

Discussion

The main new finding of the present study is that in normal anaesthetized, paralysed subjects the linear viscoelastic model originally proposed by Mount [9] explains satisfactorily the stress adaptation behaviour of the lung and chest wall over a wide range of inflation volumes (up to 3 L) and pressures (up to 30 cmH$_2$O).
LUNG AND CHEST WALL VISCOELASTICITY

Table 2. Quasi-static elastance (Est) of respiratory system (rs), lung (L), and chest wall (w), and of interrupter resistance of respiratory system (Rint,rs) in 15 anaesthetized, paralysed subjects ventilated with fixed tidal volume (0.61±0.05 L) at different levels of peak end-expiratory pressure (PEEP)

<table>
<thead>
<tr>
<th>PEEP cmH2O</th>
<th>Est,rs cmH2O·L⁻¹</th>
<th>Est,L cmH2O·L⁻¹</th>
<th>Est,w cmH2O·L⁻¹</th>
<th>Rint,rs cmH2O·s⁻¹·L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.6±3.3</td>
<td>8.7±2.4</td>
<td>5.8±2.0</td>
<td>1.4±0.3</td>
</tr>
<tr>
<td>9±2</td>
<td>12.2±3.8*</td>
<td>7.2±2.5†</td>
<td>5.0±2.0*</td>
<td>1.3±0.3*</td>
</tr>
<tr>
<td>23±2</td>
<td>18.9±3.4*</td>
<td>15.3±2.6*</td>
<td>3.6±1.3*</td>
<td>1.1±0.2*</td>
</tr>
</tbody>
</table>

Values are presented as mean±sd. *: p<0.001; †: p<0.01; ‡: p<0.05, compared with PEEP=0.

Quasi-static volume-pressure curves

As expected, the slope of the V-P curves of the chest wall increased progressively with increasing lung volume, whilst the V-P curves of the lungs were S-shaped (fig. 1). Except in three subjects, the lower inflection point ("knee") was slight, indicating that there was little or no small airway closure and/or atelectasis [10, 11]. This is supported by the fact that at the same lung volume the end-expiratory Pt on PEEP of 9 cmH2O was not significantly lower than the end-inspiratory Pt on ZEEP (5.3±1.3 versus 5.7±1.4 cmH2O). In contrast, in a previous investigation [12], these pressures were significantly larger on ZEEP (ΔPt=0.6±0.3 cmH2O), suggesting that PEEP had resulted in larger alveolar recruitment or larger stress relaxation [13]. However, likely because of stress relaxation, both end-expiratory Pt and Pw on PEEP of 23 cmH2O were substantially lower than the values expected on the basis of the inflation V-P curves (fig. 5).

On ZEEP, the values of Est,rs, Est,L and Est,w obtained at baseline Vt (table 2) were essentially the same as those previously found in similar experiments on normal subjects [2] in which Est,L and Est,w amounted to 8.2±1.7 and 6.3±1.1 cmH2O·L⁻¹. With PEEP of 9 cmH2O there was a significant decrease in Est,rs, Est,L and Est,w (table 2), in line with previous results obtained with PEEP of 8 and 10 cmH2O [12, 14]. With PEEP of 23 cmH2O both Est,rs and Est,L increased significantly relative to corresponding values on ZEEP, while Est,w was markedly decreased (table 2). There are no previous data for such high levels of PEEP in normal subjects. The changes in Est,L and Est,w with PEEP in table 2 reflect the corresponding quasi-static V-P curves (fig. 5).

Sharp et al. [15] were the only ones to assess quasi-static V-P curves of normal anaesthetized, paralysed subjects over a large volume range as in the present study. While the V-P curves of the chest wall were similar to those in figure 1, the V-P of the lung were linear and shifted to the left. However, in the study of Sharp et al. [15] the lungs were held inflated for 10 s at a tracheal pressure of 40 cmH2O before measurements: this should reduce atelectasis and small airway closure, which are thought to contribute to the "knee" at low inflation volumes [8]. The subjects were also older in the study of Sharp et al. (mean age: 47 yrs) and taller (mean height: 177 cm): owing to the age related loss of lung elastic recoil, the upper inflection point in the P-V curve should be less marked than in young subjects [16], while the greater TLC and lower EL in taller individuals should allow accomodation of greater absolute volumes before reaching the upper inflection point of the P-V curve. Also in the study of Sharp et al. [15] V-P curves were obtained by a sequence of stepwise lung inflations that lasted ~30 s: during this time there could be an artefactual decrease in lung volume due to continuing gas exchange, which was minimized in the present study because the P-V curves were constructed by inflating intermittently the lungs with different volumes.

Interrupter resistance

Rint,rs did not change with Vt, independent of the end-inspiratory lung volume. This is in line with the findings of Jonson et al. [3] and D'Angelo et al. [12], but contrasts...
with earlier results [1, 2] showing a significant, though small, increase of $R_{visc,L}$ with increasing V'. This discrepancy is probably due to methodological differences: in the earlier study a subtraction technique was used to correct for the resistance of the endotracheal (ET) tube, whilst in the other studies tracheal pressure was directly measured, and it has been shown that the ET tube resistance in situ may differ from that in vitro [17].

The present study provides for the first time the relationship of $G_{int,rs}$ with lung volume (AV) up to 3 L above functional residual capacity (FRC). This relationship was linear and independent of the way AV were obtained (fig. 2). However, in three of the subjects studied with increasing V' and in four of the subjects studied at various levels of PEEP with fixed V', $G_{int,rs}$ actually decreased at the highest AV. The nature of this phenomenon, which has also been observed in some patients with ARDS [14, 18], is unknown; it is possible that at high lung volumes the longitudinal stretching of large airways induces a decrease in calibre and/or viscous dissipations within the chest wall tissues are increased [19].

Viscoelastic properties

The slow decay of pressure after the end-inspiratory occlusion should essentially reflect viscoelastic behaviour, since pendelluft, which could also contribute to that decay, is irrelevant in normal lungs [20, 21]. In all subjects and conditions, the viscoelastic behaviour of the chest wall could be described by a unique relationship (Equation 1). The same applies to the lung, except for three subjects in whom, during lung inflation of 0.5 L from ZEEP, $R_{visc,L}$ was 15–20% larger than with higher inflation volumes. In contrast, in the same three subjects τ_{visc} was independent of inflation volume. These subjects were the ones who exhibited a clearcut "knee" on the quasi-static inflation $V'P$ curve of the lung. This "knee" is consistent with recruitment of atelectatic lung units [10] or reopening of small airways. Under these conditions the functional lung volume is reduced, and hence, for a given V', the expansion of the units that are still functional is greater than would be obtained if all units were functional. Assuming uniform viscoelastic properties within the lung, a reduction in functional lung units should cause a proportional increase in R_{visc} with no change in τ_{visc}. Thus the increase of $R_{visc,L}$ with the smallest V' would imply a 15–20% reduction in functional lung units. However, there is no direct evidence that such a reduction in functional lung units was actually present in these three subjects, whose age ranged 14–25 yrs. In older individuals a substantial decrease in functional lung units may be present as a result of increased closing capacity and reduction in FRC during anaesthesia [10, 18].

Previous studies on normal anaesthetized, paralysed subjects, in whom viscoelastic constants were assessed using the end-inspiratory airway occlusion method, were limited to smaller lung volumes [1–3, 12, 14]. In 42 normal subjects, at inflation volumes up to 1 L above FRC, the values of R_{visc} (2.7±1.1 and 2.0±0.7 cmH$_2$O s$^{-1}$L$^{-1}$) and τ_{visc} (1.2±0.32 and 1.21±0.31 s) for the lung and chest wall were independent of lung volume and not significantly different from the corresponding values obtained in the present investigation (tables 1 and 3). The fact that, on average, τ_{visc} in the latter study was slightly longer is probably related to the greater range, nearly three times, of ti used in the present study. This allowed extension of the observations towards the flat portion of the ΔV-ti relationship (fig. 3 and 4), which is implicit in the viscoelastic model described by Equation 1.

Stress adaptation (P_{1}-P_{st}) after lung inflations from 0.5–3 L above FRC has been investigated in 12 normal anaesthetized, paralysed subjects by Sharp et al. [15]. In line with the present results, they found that: 1) the time course of stress adaptation is essentially monoexponential with time constants (τ_{visc}) in the range 1.1–2 s that are independent of inflation volume and only slightly shorter for the chest wall than the lung; and 2) stress adaptation was greater in the lung than chest wall, independent of inflation volume. Conversely, Sharp et al. [15] found that stress adaptation of lung and chest wall tissues increased, though moderately, with the largest inflation volumes. According to Equation 1 this may either indicate that R_{visc} increased with inflation volume, since τ_{visc} remained unchanged, or reflect the fact that the duration of inflation increased with increasing AV. Indeed in the study of Sharp et al. [15] lung inflations were accomplished manually with a supersyringe, without fixing the duration of inflation, except for keeping it <1 s. An additional limitation in comparing the results of the present study with those of Sharp et al. [15] is related to differences in the inspiratory flow waveform. Indeed, the pressure stored in the viscoelastic elements at end-inflation, and hence the amount of stress adaptation, should also vary with the inspiratory flow waveform [22].

In the model of Mount [9], a single Kelvin body confers viscoelastic behaviour to the respiratory system and its component parts. In contrast, Hildebrandt [23], on the basis of stress relaxation data obtained in isolated cat lungs, proposed a model in which the viscoelastic compartment is made by linear viscoelastic material.
with a continuous distribution of time constants, the mechanical analogue being represented by a number of Kelvin bodies arranged in parallel. Indeed, when assessed over extended periods, the time course of the pressure decay that occurs after a step change in volume can be represented by a simple linear viscoelastic model of Mount [9], while nonlinearity could reflect in part the volume dependence of viscous and quasi-static elastance (fig. 1 and 2), which could be due to disease-related lung injury rather than over-distension of functional lung units. In fact, in the present study the end-inspiratory Pdi averaged 30 cmH₂O (fig. 1). According to the 1993 Consensus Conference of the American College of Chest Physicians, maximal inspiratory transalveolar pressure should not exceed 30–35 cmH₂O during each tidal cycle [29].

In conclusion, the results obtained in normal anaesthetized, paralysed subjects by means of the rapid end-inspiratory occlusion method, show that the viscoelastic behaviour of the respiratory system at large inflation and mean lung volumes is satisfactorily described by the simple linear viscoelastic model of Mount [9], while nonlinearities are due to volume dependence of interrupter resistance and quasi-static elastance of the respiratory system. The Mount model also adequately describes the impedance data obtained in previous studies [24, 26] on normal awake humans with the forced oscillation method. In anaesthetized paralysed humans the rapid end-inspiratory occlusion method is technically easier to implement than the forced oscillation method, which involves major methodological problems.

Acknowledgements. The authors wish to thank M. Catagni, the physicians and nursing staff of the Orthopaedic Division of the Lecco Hospital for their valuable cooperation.

References

\[R_{\text{eff}} = R_1 + R_{\text{tis}} = R_1 + 0.683B/\omega; \quad E_{\text{dyn}} = A + B(0.25 + \log_2) \]
\[R_{\text{eff}} = R_{\text{int}} + R_{\text{visc}}/(1 + \omega^2 \cdot \tau_{\text{visc}}^2); \]
\[E_{\text{dyn}} = E_{\text{st}} + E_{\text{visc}}\cdot\omega^2 \cdot \tau_{\text{visc}}^2/(1 + \omega^2 \cdot \tau_{\text{visc}}^2) \]

