Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury

A.D. Bersten

ABSTRACT: Strategies to optimize alveolar recruitment and prevent lung overinflation are central to ventilatory management of patients with acute lung injury (ALI). The recent description of overinflation using multilinear regression analysis of airway pressure (Paw) and flow (V') data allows a functional assessment of lung mechanics. However, this technique has not been studied in ALI patients.

During 15 positive end-expiratory pressure (PEEP) trials in 10 ALI patients, respiratory elastance was partitioned into volume-independent (E1) and volume-dependent (E2, V'/T) components, where Paw=V'E1+V'T+RvV'+Po, where V is volume, V'T is tidal volume, Rv is respiratory resistance and Po is static recoil pressure at end-expiration (equivalent to total PEEP). Then, %E2 was calculated as (100E2V'T)/(E1+V'T); a measure of lung overinflation when %E2>>30%.

Alveolar recruitment, assessed as a PEEP-induced increase in V>50 mL at a constant Paw occurred in 14 of 15 trials (-299±34 mL, mean±SEM), but was independent of the degree of lung inflation. Lung overinflation was common (six of 15 clinically set PEEP levels) and occurred despite a dynamic elastic distending pressure (Pd,dyn)<30 cmH2O during 18 of 36 PEEP titrations. During a PEEP titration the resultant %E2 was directly related to y(peak airway pressure-Po) (r=0.86, p<0.001) and y(Pd,dyn-Po) (r=0.89, p<0.001). The 95% predictive intervals for a 2 cmH2O change in either driving pressure were %E2 values of 30.4–68.1% and 32.8–69.2%, respectively.

Single or continuous measurement of %E2 (a measure of lung inflation) is a readily available method for titrating ventilatory parameters. Further, during a positive end-expiratory pressure titration a change in ventilatory driving pressure S2 cmH2O is indicative of overinflation.

Acute lung injury (ALI) results in an increase in permeability, recruitment of neutrophils and impairment of the surfactant system. Although increased permeability in patients with the acute respiratory distress syndrome (ARDS) is evenly distributed across the lung [1], regional lung inflation is markedly heterogeneous [2, 3]. Increased lung weight tends to collapse a dependent lung, while non-dependent lung is more normally aerated. Since a relatively small lung is ventilated, excessive tidal volumes could overdistend some alveoli and produce further lung injury.

In order to prevent overdistension, current recommendations target ventilatory plateau pressures <30–35 cmH2O [4, 5], since total lung capacity is normally achieved at this level of transalveolar pressure. However, the end-inspiratory lung volume (Vei), rather than the airway pressure (Paw), appears to determine whether lung injury occurs [6]. This was confirmed in a recent clinical study where up to 90% of ARDS patients showed evidence of overinflation below a plateau pressure of 35 cmH2O [7].

Static volume-pressure curve analysis has been used to define lung overinflation, with the upper inflection point denoting a sudden increase in elastance with further inflation. However, static techniques are not widely used. Since a prolonged pause is needed for equilibration of gas flow and respiratory muscle activity may also result in an unstable end-expiratory lung volume (EELV), the subject must be paralysed. If a super-syringe technique is used allowance must be made for the continuing gas exchange and respiratory muscle activity may also result in an unstable end-expiratory lung volume (EELV), the subject must be paralysed. If a super-syringe technique is used allowance must be made for the continuing gas exchange and possibly to lung overinflation. At a given respiratory rate short time constant lung units will receive proportionately more ventilation than long time constant lung units, possibly contributing to regional overinflation [10]. This effect would not be detected by static volume-pressure curve analysis, but would contribute to both dynamic curve changes and possibly to ventilator-induced lung injury.

Models for estimating overinflation from dynamic volume-pressure curves, by partitioning dynamic respiratory elastance (Edyn) into volume-independent (E1) and volume-dependent (E2) components [11–13], have only recently been described. However, this technique has not been

Copyright ©ERS Journals Ltd 1998
European Respiratory Journal
ISSN 0903 - 1936
applied to ventilation strategies of adults with ALI. The purpose of this study was to examine the feasibility of this technique as a direct monitor, and to develop a simple bedside estimate of overinflation during positive end-expiratory pressure (PEEP) trials in this group of patients.

Methods

This study was part of a project examining pulmonary surfactant and surfactant proteins in plasma and was approved by the Committee for Clinical Investigation, Flinders Medical Centre (permit no. 26/93). Informed consent was obtained from the subjects or their closest relative.

Study design

Ten ALI patients, eight with ARDS and two at risk, were studied (total of 15 PEEP trials, table 1). Multiple studies on separate days were conducted on patients numbers 8, 9 and 10. On each occasion their results were used to adjust the subsequent ventilator settings. All patients were sedated with an infusion of morphine and midazolam and were paralysed with pancuronium bromide. Their Acute Physiology and Chronic Health Evaluation (APACHE II) score and predicted mortality during the first 24 h of their intensive care unit admission.

Table 1. – Characteristics of the study patients

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Day of MV</th>
<th>ETT size</th>
<th>Cause of ALI</th>
<th>PEEP</th>
<th>PaO2/FI02</th>
<th>%E1,2</th>
<th>PEEdyn</th>
<th>LISP</th>
<th>APACHE II/PM</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>M</td>
<td>3</td>
<td>9.0</td>
<td>Ruptured AAA</td>
<td>5</td>
<td>176</td>
<td>3.7</td>
<td>26.6</td>
<td>1.5</td>
<td>18/0.17</td>
<td>S</td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>3</td>
<td>9.0</td>
<td>Lung contusion</td>
<td>10</td>
<td>228</td>
<td>38.5</td>
<td>30.4</td>
<td>2.25</td>
<td>17/0.09</td>
<td>S</td>
</tr>
<tr>
<td>72</td>
<td>F</td>
<td>1</td>
<td>8.0</td>
<td>Legionnaire’s disease</td>
<td>7</td>
<td>66</td>
<td>49.6</td>
<td>28.9</td>
<td>2.75</td>
<td>41/0.93</td>
<td>D</td>
</tr>
<tr>
<td>48</td>
<td>M</td>
<td>3</td>
<td>9.0</td>
<td>Pancreatitis</td>
<td>5</td>
<td>245</td>
<td>-2.2</td>
<td>22.5</td>
<td>1.5</td>
<td>21/0.91</td>
<td>S</td>
</tr>
<tr>
<td>68</td>
<td>F</td>
<td>4</td>
<td>7.0</td>
<td>Pulmonary embolus</td>
<td>7.5</td>
<td>145</td>
<td>16.6</td>
<td>20.2</td>
<td>1.75</td>
<td>27/0.57</td>
<td>S</td>
</tr>
<tr>
<td>54</td>
<td>M</td>
<td>2</td>
<td>9.0</td>
<td>Aspiration</td>
<td>7.5</td>
<td>129</td>
<td>27.7</td>
<td>25.5</td>
<td>2.67</td>
<td>26/0.57</td>
<td>S</td>
</tr>
<tr>
<td>73</td>
<td>M</td>
<td>3</td>
<td>9.0</td>
<td>Aspiration</td>
<td>10</td>
<td>102</td>
<td>46.5</td>
<td>29.8</td>
<td>3.3</td>
<td>27/0.68</td>
<td>D</td>
</tr>
<tr>
<td>72</td>
<td>M</td>
<td>1</td>
<td>9.0</td>
<td>Pneumonia</td>
<td>8.5</td>
<td>140</td>
<td>24.3</td>
<td>30.3</td>
<td>2.75</td>
<td>28/0.67</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>3</td>
<td>9.0</td>
<td>Aspiration</td>
<td>10</td>
<td>116</td>
<td>40.9</td>
<td>33.1</td>
<td>3.5</td>
<td>25/0.50</td>
<td>S</td>
</tr>
<tr>
<td>81</td>
<td>M</td>
<td>1</td>
<td>9.0</td>
<td>Aspiration</td>
<td>4</td>
<td>82</td>
<td>40.5</td>
<td>19.0</td>
<td>2.25</td>
<td>25/0.50</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7.5</td>
<td>112</td>
<td>50.5</td>
<td>22.8</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>M</td>
<td>3</td>
<td>9.0</td>
<td>Liver transplant</td>
<td>10</td>
<td>157</td>
<td>12.1</td>
<td>23.0</td>
<td>2.75</td>
<td>31/0.60</td>
<td>S</td>
</tr>
</tbody>
</table>

MV: mechanical ventilation; ETT: endotracheal tube; ALI: acute lung injury; PEEP: positive end-expiratory pressure; PaO2: arterial oxygen tension; FI02: inspiratory oxygen fraction; %E1: degree of inflation; PEEdyn: dynamic elastic airway pressure; LISP: lung injury score; APACHE II: Acute Physiology and Chronic Health Evaluation II score; PM: predicted mortality; M: male; F: female; AAA: abdominal aortic aneurysm; S: survived; D: died; *: %E1 equals 100 E1/VT(E1+E2). VT where VT is tidal volume and E1 and E2 are derived from the volume-dependent single compartment model [11]; †: lung injury scores [14]; ‡: predicted mortality was calculated from published data [15] and APACHE II scores from first 24 h of intensive care unit admission.

Equipment and procedure

Flow was measured with a heated, Fleisch-type pneumotachograph (HP-47034A, Hewlett-Packard, Palo Alto, CA, USA) and transducer (21072A; Hewlett-Packard), which had been calibrated over the range 0–300 L·min⁻¹ with a flow calibration set (18987-1; Gould Godard VB, Bilthoven, The Netherlands). The pneumotachograph was connected between the Y-piece of the ventilator tubing and the endotracheal tube. Paco2 was measured proximal to the endotracheal tube by a precalibrated (water manometer) strain gauge transducer (Bell and Howell 4-327-I; Trans-America Delaval, Pasadena, CA, USA). Flow and Paco2 were recorded on a personal computer via a 12-bit analogue-to-digital converter (DT2801; Data Translation, Marlboro, MA, USA) at 100 Hz for later data analysis (ANADAT 5.1; RHT-InfoDAT, Montreal, Canada).

After 30 min at each PEEP level, 60 s of data were collected, the last 20 s of which were used to measure the increase in EELV (ΔEELV) caused by the total PEEP (PEEPtot); where this equals intrinsic PEEP (PEEPi) plus any intrinsic PEEP (PEEPi) present. In brief, the ventilator frequency was set at zero and the PEEPi removed, allowing the respiratory system sufficient time to reach its relaxation volume (Vr) [17]. Volume (V) was obtained from the tidal breath data, by digital integration of the V signal and referenced to Vr by adding ΔEELV. The signals were then breath-averaged and the dynamic volume-pressure relationship was obtained by plotting V against Paco2. The PEEP-recruited lung volume was measured as the increase in volume at a constant Paco2, typically 20 cmH2O (fig. 1), with an increase in volume >50 mL considered to be evidence of lung recruitment, as described by Ramieri et al. [17, 18]. Veli was calculated as ΔEELV + Vr.
Although both models fitted the data well, with \(r^2 \) generally exceeding 0.98, the VDSCM described the overinflated data more accurately than did the LSCM (\(p < 0.001 \)) (fig. 2). Consequently, only the VDSCM data are presented.

Multilinear regression analysis and lung overinflation

Over the range of PEEP studied, the \(E_{rs,dyn} \) increased (2.4 cmH\(_2\)O·L\(^{-1} \), 95% confidence interval (CI) 0.4–4.4 cmH\(_2\)O·L\(^{-1} \)) owing to the combined effects of a fall in \(E_1 \) (-2.7 cmH\(_2\)O·L\(^{-1} \), 95% CI -1.1–-4.3 cmH\(_2\)O·L\(^{-1} \)) and a rise in \(E_2 \) (5.1 cmH\(_2\)O·L\(^{-1} \), 95% CI 3.1–7.1 cmH\(_2\)O·L\(^{-1} \)). Consequently, the %\(E_2 \) rose (17.2%, 95% CI 11.3–23.0%). The change in \(E_1 \) correlated directly with the initial %\(E_2 \) (\(r = 0.59, p = 0.02 \)) and inversely with the %\(E_2 \) (\(r = 0.60, p = 0.02 \)).

Overinflation, as judged by a %\(E_2 \) > 30%, was common and correlated with V/\(V_O2 \) (\(r = 0.70, p < 0.001, r^2 = 0.80, p < 0.001 \) for 10 PEEP trials; fig. 3) and indirectly with the \(P_{aw} / F_I O_2 \) ratio (\(r = -0.79, p < 0.001, r^2 = 0.87, p < 0.001 \) for 10 PEEP trials).
Spearman rank correlation coefficient (rs)=0.80, p<0.001. When only 10 PEEP trials (n=35 PEEP titrations) were tested, a similar relationship was found, with rank correlation coefficients (rs)=0.92, p<0.001 and rs=0.90, p<0.001 for the relationship between ýP and %E.

Alveolar recruitment

Across the range of applied PEEP, 14 of the 15 PEEP trials showed lung recruitment in excess of 50 mL (299±34mL). Six PEEP trials had a baseline %E>30%; however, there was no relationship between %E and the recruited volume (r=0.22), with the non-overinflated patients recruiting a similar volume (311±50mL) to the overinflated patients (234±50mL, p=0.48). A weak correlation was found between the recruited volume and ý%E (r=0.62, p=0.014), but no relation was found between the recruited volume and ýE (r=0.41).

Discussion

Addition of a volume-dependent elastance term to multilinear regression analysis improves the model fit in mechanically ventilated patients with ALI. Overinflation was common in the study patients and not well predicted by the alveolar distending pressure; however, changes in ventilatory driving pressure during PEEP titrations were highly correlated with overinflation and could provide a simple, immediately available bedside estimate. Since these data are modelled from dynamic volume-pressure data, this technique could be modified to monitor overinflation continuously and, potentially, to assist in a servo-controlled mode of ventilation.
correlation coefficient (r_s) = 0.47, $p = 0.0007$) >30%). When only 10 positive end-expiratory pressure (PEEP) trials (n=35 PEEP titrations) were tested almost identical results were found (r_s=0.59, $p<0.001$).

Fig. 5. Although a broad correlation was found between the degree of lung inflation ($\%E_I$) and dynamic elastic airway pressure ($P_{E_{dyn}}$), 50% of the data with a $P_{E_{dyn}} < 30$ cmH$_2$O were overinflated ($\%E_I$; rank correlation coefficient (r_s)=0.47, $p=0.0007$). When only 10 positive end-expiratory pressure (PEEP) trials (n=35 PEEP titrations) were tested almost identical results were found (r_s=0.59, $p<0.001$).

Critique of methodology

Although ROUSSELOT et al. [12] and PERLIN et al. [13] found little improvement in model fit with the addition of a volume-dependent elastance term, it is probable their patients were not overinflated. The present data comparing the linear and volume-dependent models are almost identical to those of KANO et al. [11], who purposefully induced overinflation in anaesthetized dogs. While both models showed high r^2 values, the r^2 for the LSCM became less robust as $\%E_I$ increased (fig. 2). Consequently, we have only reported data from the VDSCM.

Fitting the data to the VDSCM means that $E_{rs, dyn} = E_I + E_{I V}$; in other words $E_{rs, dyn}$ increases linearly with volume, with a slope of E_I; however, these values will only be applicable to the data set fitted. Increasing PEEP generally resulted in a recruitment of lung units, leading to a fundamental change in the respiratory system being ventilated. This was reflected by altered values for E_I and E_{IV}, with the fall in E_I consistent with a greater mass of lung being ventilated and the increase in E_{IV} reflecting overdistension of inflated alveoli. If the respiratory system were unchanged by changing PEEP, E_I and E_{IV} should remain constant. While this does not mean that the true volume-pressure is exactly a quadratic function, the great utility of the VDSCM is that it is a better model of the respiratory system in ALI patients than a LSCM that also yields rapid, sensible and robust information from routinely available measurements.

Since flow and resistance are part of the multilinear regression model, measures of elastance are relatively independent of ventilatory flow pattern or resistance. KANO et al. [11] also demonstrated that endotracheal tube size and resistance did not influence $\%E_I$; consequently, no account was taken of this in the present study. However, visual assessment of volume-pressure relations and the ratio of the final 20% of inspiratory dynamic compliance to the total dynamic compliance are influenced by flow-resistant effects [11] and may not easily be interpreted.

For example, in figure 1a the degree of lung overinflation and its increase during incremental PEEP is not obvious until the $\%E_I$ is calculated. While analysis of a constant inspiratory flow pattern [18] minimizes resistive effects and is conceptually similar to the current model, it precludes analysis of many clinically used flow or pressure patterns. Consequently, the VDSCM modification of the equation of motion offers a number of important advantages.

Respiratory system elastance is the sum of lung and chest wall elastance, both of which may be increased in patients with ALI. Since no oesophageal balloon was inserted in the present study patients these components cannot be separated out. However, while chest wall elastance is commonly increased in ALI [21], ROUSSELOT et al. [7] found that overinflation determined from static respiratory system volume-pressure curves reflected lung overinflation since the chest wall component remained linear. Consequently, overdistension measured using volume-dependent elastance should reflect lung overinflation. Indeed, while a number of patients may have had distinct increases in chest wall elastance due to abdominal distension (patients numbers 1, 4 and 10, day 1), their $\%E_I$ still correlated with V_{TI} as expected. Consistent with the notion that in these patients abdominal distension may have increased $E_{rs, dyn}$, it is noteworthy that all three had lower $\%E_I$ values despite alveolar distending pressures similar to the other patients studied. Finally, negative $\%E_I$ values were present in all three patients at a PEEP of 5 cmH$_2$O, suggestive of atelectasis and a negative volume dependence [9].

Assessment of overinflation

Based on direct comparison with static volume-pressure curves, KANO et al. [11] proposed that $\%E_I$ $>30\%$ indicated overinflation. In the absence of static volume-pressure curves in the present study, the relationship between $\%E_I$ and the V_{TI}-kg body weight$^{-1}$ was examined. Pooling all data, $\%E_I$ correlated strongly with V_{TI}-kg body weight$^{-1}$ and when each PEEP trial was plotted individually against V_{TI}-kg body weight$^{-1}$, $\%E_I$ increased monotonically. This is consistent with $\%E_I$ reflecting progressive inflation, while the intercept of the $\%E_I$ versus change in ventilatory driving pressure is consistent with the notion of a $\%E_I$ $>30\%$ representing overinflation. Finally, TUXEN et al. [22] proposed a safe V_{TI}-kg body weight$^{-1}$ in asthmatic patients was <20 mL·kg$^{-1}$, very close to the intercept of V_{TI}-kg body weight$^{-1}$ with $\%E_I$ of 30% in the present study.

ROUSSELOT et al. [7] found that ARDS patients had an upper inflection point (24±1 cmH$_2$O, range 18–37 cmH$_2$O) on their static volume-pressure curve. Their plateau pressure commonly exceeded the upper inflection point (80% incidence) when a V_{TI} of 10 mL·kg$^{-1}$ was used; however, this decreased dramatically (0–20% incidence) with V_{TI} of 5.5–7 mL·kg$^{-1}$. Using impedance plethysmography, BIRNIE et al. [23, 24] also found an upper inflection point in ARDS patients, albeit at generally higher pressures than ROUSSELOT et al. [7]. However, almost half the time this occurred at P_{aw} <30 cmH$_2$O. In agreement with these studies, over-inflation was common in the present study (fig. 5, table 2) despite attempts to limit the alveolar distending pressure. These data suggest that maintenance of a P_{aw} below an arbitrary limit poorly limits the incidence of overdistension.
Since the consequences of lung overdistension include ALI and overt barotrauma, it is likely to be important that overdistension be monitored directly and mechanical ventilation titrated accordingly; this was a major impetus for the current study. However, since derivation of $\%E_1$ from a dynamic volume-pressure curve requires a number of mathematical steps, it currently remains a research tool. Potentially, these steps can be programmed into modern ventilators with $\%E_1$ continuously displayed and used to adjust ventilator settings.

The change in ventilatory driving pressure was also examined as a measure of $\%E_1$ since equivalent pressure data (plateau pressure or, more correctly, the pressure immediately after end-inspiratory occlusion for $P_{el,dyn}$ [25] and PEEP$_{pot}$ for P_0) are currently available at the bedside. The strong correlation of the change in ventilatory driving pressure with $\%E_1$ following a change in the applied PEEP (fig. 4) offers an indirect measure of overinflation that could be used independently of the volume-pressure curve, with a rise in driving pressure ΔP_2 cmH$_2$O indicative of overinflation. Intuitively, this makes sense, as these pressure changes will only increase when there is an increase in E_1 and this will reflect an increase in E_1/V_T.

Alveolar recruitment and overdistension

Concurrent with PEEP-induced recruitment, E_2 fell, probably reflecting a greater mass of ventilated lung, and $\%E_2$ rose; however, neither was related to the volume recruited. Consistent with computed tomography scan data showing PEEP-induced recruitment of collapsed lung with concurrent overinflation of aerated lung [26], recruitment was found to be independent of overinflation and \dot{y}_E was inversely related to \dot{y}_E. As incremental PEEP resulted in increases in V_T·kg body weight$^{-1}$, and a monotonic increase in $\%E_1$, overinflation often accompanied recruitment. Perhaps use of lower V_T than used in the current study (8–10 mL·kg$^{-1}$) would have allowed recruitment without overinflation. Indeed, AMATO et al. [27] reported an improvement in lung function using a V_T of 6 mL·kg$^{-1}$ and a PEEP level determined from a static volume-pressure curve, compared to a randomized control group undergoing conventional ventilation.

The volume-dependent model was used to examine theoretically the relative value of V_T reduction as a strategy to prevent overinflation. Assuming that E_1 is unchanged by decreasing V_T, compare the two situations: 1) where $E_1=2E_2/V_T$ with $\%E_2$ of 33%, and 2) where $E_1=E_2/V_T$ with $\%E_2$ of 50%. In the first instance a reduction in V_T to two-thirds of its initial value would reduce $\%E_1$ by one-quarter to a $\%E_1$ of 25%, but a reduction of only 20% to a $\%E_1$ of 40% would occur in the second instance. Hence, the higher the ratio of $E_1/V_T:E_2$, the greater the degree of overinflation, with a concomitant reduction in the effectiveness of V_T reduction in reducing $\%E_1$. Using this strategy, ROUPIE et al. [7] reported that a V_T reduction of one-third resulted in fewer than 10% of their patients exceeding the upper in-flection point, with a rise in the arterial carbon dioxide tension (P_aCO_2) from 5.9 to 10.2 kPa (44 to 77 mmHg). It follows from the present data that their $E_1/V_T:E_2$ ratio would lie between the two examples discussed above.

In contrast to patients with ARDS, ROUPIE et al. [7] found that patients with mild ALI rarely demonstrated an upper inflection point (maximum V_T examined 1.600 mL), suggesting that overinflation during conventional techni-ques of mechanical ventilation reflects the severity of the underlying lung injury and heterogeneity of the respira-

Conclusions

This study described the use of a volume-dependent, single-compartment model to estimate overinflation in patients with ALI. Overinflation was common, and paradoxically not prevented by avoidance of an elastic distending pressure in excess of 30 cmH$_2$O. If surfactant comprises two-thirds of lung elastance [28], this could be explained by impaired surfactant function, with a decrease in surface tension hysteresis [29] and a failure to increase pressure in overinflated alveoli.

Overinflation may be readily estimated as an increased ventilatory driving pressure, the difference between positive end-expiratory pressure and either the peak or static airway pressure, ΔP_2 cmH$_2$O during a positive end-expiratory pressure titration. However, the volume-dependent, single-compartment model analysis could be continuously displayed with positive end-expiratory pressure and tidal volume adjusted automatically in order to minimize ventilator-induced lung injury. Prospective studies are needed to determine whether this approach to reducing ventilator-induced lung injury results in improved outcome.

Acknowledgements: The author gratefully acknowledges the technical assistance of A. Rutten and helpful comments from J.H.T. Bates.

References