Respiratory epithelial permeability is unrelated to bronchial reactivity and small airway function in young smokers and nonsmokers

R.G. Taylor*, J.E. Agnew**, R.A. Francis***, D. Pavia*, S.W. Clarke*

ABSTRACT: We studied eight young smokers and ten nonsmokers, to determine whether respiratory epithelial permeability to radiolabelled diethylenetriamine penta-acetate (DTPA) was related to small airway function or bronchial reactivity. Permeability was measured in inner (containing central airways) and outer lung zones by gamma camera. Lung-to-blood half-time (LB-Tt) was corrected for blood background. Histamine was inhaled tidally (2 min inhalations) using doubling concentrations from 2 to 64 mg·ml⁻¹. Results of small airway function tests, and of bronchial reactivity (expressed as the threshold concentration (reducing forced expiratory volume in one second (FEV₁) by 2 SD), and as the percentage reduction in FEV₁, after histamine 16 mg·ml⁻¹) were similar in smokers and nonsmokers. LB-Tt was shorter in smokers than in nonsmokers in both inner (median (range) 21 (5.5-33) vs 63.5 (41-115) min; p < 0.004) and outer (20.5 (5.5-30) vs 58.5 (39-105) min; p < 0.004) zones. Neither inner nor outer zone LB-Tt was related to small airway function or bronchial reactivity. Bronchial reactivity and small airway tests may be abnormal in middle-aged smokers, but neither is related to the increased respiratory epithelial permeability of young smokers, in whom it appears too sensitive an index of airway integrity.

Received: March 12, 1987; accepted after revision August 17, 1987.

Subjects and methods

Subjects

Eighteen male hospital employees volunteered to be studied. They were of European extraction, aged 20-36 yr, and in good general health. Eight of them were regular smokers and ten were nonsmokers (had never smoked more than one cigarette a day for a year). None of the subjects took medication regularly or had had a respiratory infection within the previous eight weeks. Subjects were excluded if they had asthma. This was diagnosed by positive answers to enquiries about previous asthma or episodic wheeze, dyspnoea and tightness in the chest. All the subjects gave their written consent to be studied, and the study was approved by the hospital's ethical committee.

Lung function

The FEV₁ was measured with a Vitalograph spirometer. Maximal expiratory flow at 50% (Vmax50) and 25% (Vmax25) of vital capacity were...
measured with an Ohio 840 spirometer and Bryans 60000 X-Y recorder. An Ohio 700 nitrogen analyser was also used for the single-breath nitrogen test, to determine the slope of phase III ($\Delta N_2/\Delta t$) and closing volume as percentage of vital capacity, (CV/VC%). The largest of three values of FEV$_1$, and the $V_{\text{max}25}$, $V_{\text{max}50}$, $\Delta N_2/\Delta t$ and CV/VC% from the largest of three vital capacity tracings were each expressed as a percentage of the predicted value [5, 6, 25]. Results from the single-breath nitrogen test were not obtained from one smoker because of technical failure.

Respiratory epithelial permeability

This was measured according to a modification of the protocol of Jones et al. [21]. An aerosol of technetium-labelled diethylenetriamine penta-acetate (99mTcDTPA) was generated from an Acorn nebulizer, shielded in a lead pot and driven at a compressed airflow of 10 l·min$^{-1}$. Nebulization continued until the aerosol generated filled a 25 litre reservoir bag, which was then left undisturbed for 5 min to allow large particles to settle out. The MMD of the aerosol subsequently inhaled was 0.6 (2.5) µm, with less than 5% of the particles >2 µm in diameter [12]. Each subject inhaled the aerosol with normal tidal breathing while seated in front of a gamma camera (International General Electric MaxiCamera). Inhalation was stopped when a predetermined lung count of 1,600 counts·sec$^{-1}$ had been reached. Sequential 1-min gamma camera images were then recorded, together with counts from a collimated scintillation counter positioned over the right thigh, pointing away from the bladder, to record the count as it built up in peripheral blood. After 30 min, a bolus of 8 MBq (approximately 220 µCi) of 99mTcDTPA was injected intravenously to allow correction of the lung clearance curve for the contribution from vascular tissue in the lung detector.
Results

There were no differences between the smokers and nonsmokers in age or baseline lung function (table 1). In the smokers, the median (range) duration of smoking was 9 (6-20) yr, and daily consumption 20 (10-30) cigarettes.

The corrected lung to blood half time (LB-Tt) was significantly shorter in smokers than in nonsmokers in both inner and outer lung zones, but within each group of subjects, the LB-Tt was similar in the inner and outer zones (fig. 2).

In both smokers and nonsmokers, neither inner nor outer zone LB-Tt was significantly related to any index of small airway function (Vmax 50, Vmax 25, ΔN2/L, CV/VC%) or bronchial reactivity (threshold concentration, percentage reduction in FEV1 with nebulised histamine 16 mg·ml⁻¹).

Representative illustrations of the results obtained from smokers are shown in figures 3-5.

Discussion

This study shows that, in young smokers with normal lung function, there is no relationship between respiratory epithelial permeability and either bronchial reactivity or the results of sensitive tests of small airway function. Previous studies have looked for such relationships, but have not compared permeability with both reactivity and small airway tests in the same subjects [10, 11, 24, 32, 33].

The lack of association between these three aspects of airway integrity is initially surprising, because smoking can certainly affect all three. Young smokers, whose spirometry is normal, may have small airway disease, the extent of which correlates with the functional abnormality expressed as the increase in ΔN2/L and CV/VC% [9]. The primary lesion in such cases is a progressive inflammatory reaction in the

Table 1.- Age and results of baseline lung function tests in smokers and non-smokers. Values are median (range); lung function values are percent predicted.

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>FEV1</th>
<th>Vmax 50</th>
<th>Vmax 25</th>
<th>ΔN2/L</th>
<th>CV/VC%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smokers</td>
<td>27 (20-36)</td>
<td>99 (83-121)</td>
<td>99 (49-114)</td>
<td>75 (36-87)</td>
<td>143 (106-187)</td>
<td>104 (66-159)</td>
</tr>
<tr>
<td>Non-smokers</td>
<td>23 (20-29)</td>
<td>102 (77-114)</td>
<td>87 (61-112)</td>
<td>85 (53-107)</td>
<td>144 (84-198)</td>
<td>86 (38-149)</td>
</tr>
</tbody>
</table>

Smokers v. non-smokers: all p values >0.05.
small airways [9]. Cigarette smoke causes a dose-
dependent inflammatory reaction in the airways of
guinea pigs. This is matched in time and extent by an
increase in respiratory epithelial permeability, and
also in bronchial reactivity, perhaps caused by the
release of nerve endings lying within the epithelium
[19, 20, 35]. Intraluminal nerves may be similarly
affected in man [26].

Several studies which used the inhaled \(^{99m}\)TcDTPA
method have confirmed the original observations of
Jonas et al. [21] that respiratory epithelial permeability
is greater in symptomless smokers than in
nonsmokers [18, 24, 28, 32]. There is good evidence
that the increase in permeability is closely related to
smoking [17, 23, 28–30].

Although bronchial reactivity measured using
FEV\(_1\) is not increased in symptomless young smokers
[4, 16, 27, 37], their small airways do show abnormal
reactivity (as assessed by partial expiratory flow-
volume curves), even when the smokers are similar to
nonsmokers in pre-challenge function and in reactivity
measured using FEV\(_1\) [27]. However, the degree of
bronchial reactivity measured using FEV\(_1\) was not
related to either the normal values of \(\Delta N_{31}/l\) or
CV/VC% in young smokers [24, 37], or to the
abnormal values of middle-aged smokers [13].

Even though smoking causes abnormalities of
small airway tests, respiratory epithelial permeability
and bronchial reactivity, there are several theoretical
explanations for our observation that these indices of
airway function are not related to one another in
independent individuals. Firstly, the measurement of
permeability may reflect events taking place predomi-
nantly in the alveoli, whereas that of bronchial
reactivity reflects changes in the conducting airways.
Current methods of imaging cannot distinguish
precisely where aerosol is deposited in the respiratory
tract, the planar image being only two-dimensional [1]
and acquisition time for tomographic images long,
compared with the expected LB-T\(_2\). Commonly used
techniques employ particle sizes and modes of
inhalation which cause the DTPA aerosol to be
deposited in the alveoli and small conducting airways,
and large airway labelling is not seen [21, 22, 28]. In
addition, the surface area of the respiratory tract
increases enormously distal to the terminal bronchi-
oles, so the alveolar influence on permeability
predominates.

It is not certain if the permeability of the
conducting airways is the same as that of the alveoli.
In one study [11], subjects inhaled labelled DTPA
aerosol, of aerodynamic mass median diameter
6.3 \(\mu\)m, rapidly to accentuate deposition on the
central airways, and its subsequent rate of disappear-
ance was similar to that reported by others who used
2 \(\mu\)m particles [21]. However, recent work suggests
that mucociliary clearance, rather than epithelial
permeability, may account for removal of much of the
aerosol from the central airways [3]. We tried to allow
for any regional difference in permeability and the
fact that the particle size of the DTPA aerosol was
smaller than that of the histamine aerosol by
measuring permeability in an inner lung zone, which
contained the central airways. Despite this, no
relationship to reactivity emerged, and others have
found similar results [32]. However, although the
inner zone provided counts from the central airways,
it also included alveoli lying in front of and behind
them, because the image was only two-dimensional.
So even though permeability appeared to be similar in
the inner and outer zones within each of our two
groups of subjects, this may not actually be the case.
It is unlikely that the larger particle size of the
histamine aerosol influenced the bronchial reactivity
results, because reactivity is similar when smaller
particles are used [34].

References
1. Agnew JE, Pavia D, Clarke SW. – Airways penetration of
inhaled radioaerosol: an index to small airways function? Eur J
2. Agnew JE, Bateman JRM, Pavia D, Clarke SW. –
Radioactive demonstration of ventilatory abnormalities in mild asthma.
– The relative permeabilities of human conducting and terminal
airways to \(^{99m}\)Tc-DTPA. Eur J Respir Dis, 1987, 71, (suppl 153),
68–77.
Predicted values for closing volumes
Quantitative analysis of the alveolar Bronchi al
The use of tests
Increased alveolar epithelial permeability in cigarette
Rapidly
Changes in the normal maximal expiratory flow-volume curve