Bronchoscopic diagnosis of sarcoidosis

C. Leonard*, V.J. Tormey*, C. O’Keane**, C.M. Burke*

ABSTRACT: Transbronchial lung biopsy (TBLB), transbronchial needle aspiration (TBNA) of mediastinal lymph nodes and bronchoalveolar lavage (BAL) are routinely performed at fiberoptic bronchoscopy. Up to the present time, no data have been available on the efficacy of performing all three of these procedures simultaneously in the bronchoscopic work-up of sarcoidosis. A prospective study was undertaken to compare the diagnostic yield from TBLB, TBNA and BAL in patients presenting with clinical and radiological features typical of sarcoidosis.

Thirteen consecutive patients with clinical and radiological features consistent with stage I and II sarcoidosis underwent bronchoscopy with TBLB, TBNA and BAL.

Noncaseating granulomata (stain and culture negative for tuberculosis bacilli and fungi) were found in seven of the 13 patients by TBLB, and in six of the 13 patients by TBNA (of which four patients had negative TBLB). Eight of the 13 patients had classical "sarcoid" BAL findings, i.e. >12% lymphocytes, and high CD4+:CD8+ lymphocyte ratio. Combining TBLB, TBNA and BAL gave a diagnostic sensitivity of 100% (12 out of 12 patients) for sarcoidosis. The remaining patient had nondiagnostic bronchoscopic and mediastinoscopy biopsy showed a non-Hodgkin’s lymphoma.

Our data suggest that performing simultaneous transbronchial lung biopsy, transbronchial needle aspiration and bronchoalveolar lavage produces optimal results in the diagnosis of sarcoidosis.

Thoracic Medicine, James Connolly Memorial Hospital Blanchardstown, Dublin, Ireland. **Dept of Histopathology, Mater Misericordiae Hospital, Dublin, Ireland.

Correspondence: C.M. Burke
Dept of Respiratory Medicine
James Connolly Memorial Hospital
Blanchardstown
Dublin 15
Ireland

Keywords: Sarcoidosis
transbronchial lung biopsy
transbronchial needle aspiration

Received: December 30 1996
Accepted after revision September 8 1997

C.L. and V.J.T. are supported by British Council Chevening Research Fellowships.

*Dept of Respiratory Medicine, James Connolly Memorial Hospital Blanchardstown, Dublin, Ireland.
Up to the present time, there have been no data available on the simultaneous use of the three procedures of TBLB, BAL and TBNA. We therefore wished to investigate 13 consecutive patients with radiological features of stage I or II sarcoidosis in this way.

Materials and methods

Subjects

Thirteen consecutive subjects with clinical history, physical findings and chest radiograph consistent with stage I or II sarcoidosis were entered into the study. All patients had a chest radiograph, high-resolution computed tomography (HRCT) scan, full blood count (FBC), coagulation screen and serum calcium prior to entry into the study.

Bronchoscopy

Patients attended the day ward and were premedicated with 10 mg diazepam, and lignocaine local anaesthesia was used. An Olympus BF10 FOB (Tokyo, Japan) was then inserted nasally, with continuous monitoring of oxygen saturation and cardiograph tracing during the procedure.

Bronchoalveolar lavage

The bronchoscope was wedged in the right middle lobe bronchus, and three aliquots (180 mL) of sterile 0.9% saline instilled through the biopsy channel. After 10 s, the fluid was recovered under suction into a plastic container. The percentage of the lavage fluid recovered ranged 50–65%. The BAL fluid was analysed for total cell count, the percentage of the lavage fluid recovered ranged 50–65%. The BAL fluid was analysed for total cell count, differential count and CD4+:CD8+ ratio (using fluorescence-labelled monoclonal antibodies and a flow cytometer).

Transbronchial needle aspiration

The needle used for TBNA was an MW-319 (Mill-Rose Laboratories Inc., Mentor, OH, USA), a 140 cm long flexible plastic catheter with a retractable 19-gauge metal needle at the distal end. Inside the 19-gauge needle was a 21-gauge needle which was also retractable.

The catheter was advanced through the FOB, with both needles retracted. When the metal hub appeared through the distal end of the FOB, both needles were fully advanced and the tracheal or bronchial wall was pierced. Lymph node tissue was sampled in a standard fashion [17] by advancing, partially withdrawing, and readvancing the needle several times under suction. The areas sampled were the right paratracheal, aortopulmonary window, and anterior and posterior carinal lymph node stations. CT scans were not used to map the areas to be sampled. Once obtained, the TBNA specimen was flushed into formalin for histological examination.

Transbronchial lung biopsy

Alligator forceps were used via the FOB to obtain four or five biopsies from the right lower lobe in a standard fashion [8].

Results

No complications were seen in the patients studied, and all were discharged home from the day ward within 4 h.

Discussion

Thirteen consecutive patients with clinical and radiological features consistent with stage I or II sarcoidosis
were studied. The data show that combining the modalities of TBLB, TBNA and BAL achieved significantly better results than either TBLB, TBNA or BAL alone. Furthermore, the significantly enhanced diagnostic yield from combining these three procedures at the same bronchoscopy sitting was not associated with any additional complications. TBLB was diagnostic in seven out of 12 patients with sarcoidosis (58%), five of whom had interstitial lung disease on HRCT scan. However, TBLB was positive in two patients in whom HRCT scan showed normal lung parenchyma. These data are consistent with previous reports, which show that HRCT scanning is not useful in predicting the diagnostic yield of TBLB [25, 26]. Although our yield of 58% from TBLB is comparable to previous reports, five of the 12 patients with sarcoidosis had negative TBLB, and in the absence of TBNA and BAL at least some of these patients might have required the significantly more risky and costly procedures of mediastinoscopy or open lung biopsy to confirm the diagnosis.

TBNA can successfully sample lymph glands in a variety of pathological states. There are few reports of complications following this procedure and only a single case report records a significant complication, namely bacterial pericarditis following TBNA [27]. In four of the present patients with a negative TBLB, TBNA confirmed the diagnosis of sarcoidosis and obviated the necessity for consideration of more invasive procedures in these patients, with obvious cost-benefit implications. The overall diagnostic yield from TBNA in patients with sarcoidosis was 50% (six out of 12 patients) and is consistent with previous reports. None of the patients had any complications from the TBNA procedure.

With regard to BAL, the present data are consistent with previous reports on the utility of BAL in the diagnosis of sarcoidosis; four of the 11 patients with positive BAL, underlining the poor sensitivity of sarcoidosis. Four of the 12 patients with positive in two patients in whom HRCT scan showed normal lung parenchyma. These data are consistent with previous reports, which show that HRCT scanning is not useful in predicting the diagnostic yield of TBLB [25, 26]. Although our yield of 58% from TBLB is comparable to previous reports, five of the 12 patients with sarcoidosis had negative TBLB, and in the absence of TBNA and BAL at least some of these patients might have required the significantly more risky and costly procedures of mediastinoscopy or open lung biopsy to confirm the diagnosis.

TBNA can successfully sample lymph glands in a variety of pathological states. There are few reports of complications following this procedure and only a single case report records a significant complication, namely bacterial pericarditis following TBNA [27]. In four of the present patients with a negative TBLB, TBNA confirmed the diagnosis of sarcoidosis and obviated the necessity for consideration of more invasive procedures in these patients, with obvious cost-benefit implications. The overall diagnostic yield from TBNA in patients with sarcoidosis was 50% (six out of 12 patients) and is consistent with previous reports. None of the patients had any complications from the TBNA procedure.

With regard to BAL, the present data are consistent with previous reports on the utility of BAL in the diagnosis of sarcoidosis. Four of the 11 patients with positive BAL had negative TBLB, underlining the poor sensitivity of BAL in sarcoidosis. However, combining BAL, TBLB and TBNA gave a 100% diagnostic yield for those patients with sarcoidosis.

We are not aware of any existing information which addresses the usefulness of combining bronchoalveolar lavage, transbronchial needle aspiration and transbronchial lung biopsy at the same bronchoscopy sitting in the diagnosis of sarcoidosis. Our results suggest that the three procedures can be safely and effectively carried out at a single bronchoscopy sitting with enhanced diagnostic yield, little additional cost and no additional complications in patients with sarcoidosis.

References