Severe tracheobronchial stenosis in a patient with Crohn’s disease

ABSTRACT: Tracheobronchial involvement in Crohn’s disease is rare, usually associated with symptoms of tracheobronchitis, and typically responds well to steroids. The authors report a case of a 29-yr old patient with Crohn’s disease, who presented with dyspnoea, fever, and a productive cough. Computed tomography of the chest revealed extensive nodular tracheobronchial stenosis, that was accompanied by severe mucosal inflammation at bronchoscopy. High-dose oral steroids diminished the mucosal inflammation, but had limited efficacy on the underlying tracheobronchial stenosis. It is speculated that this relative ineffectiveness of steroids may be due to the persistence of the untreated inflammatory process.

Keywords: Crohn’s disease, tracheobronchial stenosis

Received: April 17 1998
Accepted after revision May 25 1999
T. Kuźniar was a recipient of a stipend from the Association of the Medical Doctors of Polish Origin in France.
with a stenosis of both mainstem bronchi to <40% of the normal diameter. There was no expiratory collapse. Histological examination of several biopsies of the stenosed areas showed an intense inflammatory process, mucosal hyperplasia with dense lymphocytic, and plasma cell infiltrate in the submucosa (fig. 1). Immunohistochemical tests identified the lymphocytes as both T- and B- cells. The BALF, performed during the FOB, was almost exclusively neutrophilic (97%). An extensive search for bacterial (including mycobacteria), fungal and parasitic infectious agents in the BAL was negative.

A computed tomographic scan (CT) of the thorax showed extensive airway deformities (figs. 2 and 3). The wall of the lower third of the trachea was markedly increased in thickness. The deformities extended peripherally to form nodular stenoses in the two mainstem bronchi. Mucoid impaction in small bronchi, as well as alveolar micronodules in the lower right lobe were noted (not shown).

The patient was initially treated with antibiotics (amoxicillin-clavulanate) for 10 days, along with oral steroids (starting dose, 80 mg/day1 prednisone), and nebulized budesonide (1000 μg, q.i.d.). This resulted in prompt symptomatic improvement with disappearance of purulent sputum after ~1 week. After 6 weeks, the patient was symptom-free, and had marked improvement in lung function (table 1). A follow-up CT showed a slight decrease in tracheal wall thickness, with the persistence of tracheal and bronchial deformity, and a complete clearing of parenchymal abnormalities. A control FOB performed at 4 months (fig. 4) showed the disappearance of mucosal inflammation but persistence of slit-like stenoses of trachea and bronchi. Oral steroids were subsequently tapered to 20 mg of prednisone per day at 6 months, 7.5 mg of prednisone per day at 10 months and were withdrawn at 13 months. Twenty-eight months after initial presentation the patient is receiving inhaled budesonide at the dose of 3000 μg.day1. At a control visit at 12 months, there were no changes in CT and FOB appearances of the stenotic area, but the mucosal inflammation has not recurred.

Table 1. – Pulmonary function tests’ values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>September 1996</th>
<th>November 1996</th>
<th>January 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC L</td>
<td>2.71 (56)</td>
<td>4.17 (87)</td>
<td>4.45 (93)</td>
</tr>
<tr>
<td>FEV\textsubscript{1}</td>
<td>1.54 (38)</td>
<td>2.88 (71)</td>
<td>3.10 (77)</td>
</tr>
<tr>
<td>FEV\textsubscript{1}/VC %</td>
<td>52</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>FEF25–75 L</td>
<td>0.96 (20)</td>
<td>2.18 (46)</td>
<td>2.13 (45)</td>
</tr>
<tr>
<td>P\textsubscript{a}O\textsubscript{2} kPa</td>
<td>11.2</td>
<td>13.3</td>
<td>15.0</td>
</tr>
<tr>
<td>P\textsubscript{a}CO\textsubscript{2} kPa</td>
<td>5.4</td>
<td>5.2</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Data in parentheses are percentage of predicted value. Measurements in September 1996 were taken on admission; those in November 1996 were after 6 weeks of oral and inhaled steroids; and those in January 1999 were after 28 months of therapy. VC: vital capacity; FEV\textsubscript{1}: forced expiratory volume in one second; FEF25–75%; forced mid-expiratory flow; P\textsubscript{a}O\textsubscript{2}: oxygen tension in arterial blood; P\textsubscript{a}CO\textsubscript{2}: carbon dioxide tension in arterial blood.
The authors report the case of a young patient with CD, who developed tracheobronchial inflammation and stenosis several years after the onset of his intestinal disease and colectomy. While clinically significant pulmonary involvement of CD is rare, subclinical respiratory involvement has well been described [4, 5, 13]. In inflammatory bowel disease (IBD) in general, many forms of bronchial involvement typically develop after colectomy [14]. This feature is especially true in patients with ulcerative colitis [6, 11].

In the present case the authors discussed other disease processes that may produce a close clinical, endoscopic, and radiological picture. Relapsing polychondritis was excluded on the basis of clinical, radiological and histological findings [15]. Tracheal tuberculosis was also excluded due to absence of mycobacteria in repeated sputum and BAL cultures, and a clinical improvement over twelve months of steroid therapy. Although sarcoidosis and CD may coexist in the same patient [16, 17], the absence of typical sarcoid granulomata in bronchial biopsies, and the lack of evidence for extrapulmonary sarcoid involvement led the authors to rule out sarcoidosis. The absence of cutaneous pustules excluded a diagnosis of Sweet’s syndrome [18]. Tracheobronchial involvement in Wegener’s granulomatosis may present as ulcerating tracheobronchitis or tracheal-bronchial stenosis [19, 20]. The extent of tracheal and bronchial lesions observed in the current patient, the absence of histological findings suggestive of Wegener’s granulomatosis, the lack of cytoplasmic-antineutrophil cytoplasmic antibodies (c-ANCA), no extrapulmonary involvement and slow progression without specific treatment all made, in the authors’ opinion, the diagnosis of Wegener’s granulomatosis unlikely. Of note is that detectable perinuclear (p)-ANCA are a frequent finding in patients with ulcerative colitis and may occur in up to 20% of patients with CD [6, 21]. Ulcerative colitis may also affect the upper respiratory tract [6, 11, 22, 23]. In the current patient, however, the diagnosis of Crohn’s disease was initially clearly established on histological grounds of the resected bowel specimen.

Although the literature gives several descriptions of tracheobronchial involvement in CD (table 2), the extent of involvement seen in the current patient, with bronchial wall thickening, stenosis of the trachea and both mainstem bronchi seems quite unusual [6]. The initial lesion of tracheobronchial CD seems to be mucosal inflammation, with symptoms of cough and dyspnoea [6, 10–12]. In one case, the friable and haemorrhagic granulation tissue severely obstructed the tracheal lumen [6]. Mucosal inflammation may be accompanied by bronchial suppuration. Inflammation and attending obstruction may be so extensive, that this may lead to acute respiratory failure, requiring intubation and mechanical ventilation [9]. All these symptoms usually respond to inhaled and/or oral steroids [6, 9–12].

The current patient may represent a more advanced and chronic stage of the same disease process. As an appropriate dose of inhaled and/or systemic steroids may rapidly improve symptoms of tracheobronchial involvement of

<table>
<thead>
<tr>
<th>Sex</th>
<th>Type of involvement</th>
<th>Route and response to steroids</th>
<th>[Ref.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F (34)</td>
<td>tracheobronchitis with AO</td>
<td>OCS – dramatic improvement</td>
<td>[6]</td>
</tr>
<tr>
<td>M (37)</td>
<td>tracheobronchitis without AO</td>
<td>OCS and ICS – dramatic improvement</td>
<td>[9]</td>
</tr>
<tr>
<td>F (24)</td>
<td>tracheobronchitis with AO</td>
<td>OCS – dramatic improvement</td>
<td>[10]</td>
</tr>
<tr>
<td>F (19)</td>
<td>tracheobronchitis without AO</td>
<td>OCS – marked improvement</td>
<td>[10]</td>
</tr>
<tr>
<td>F (59)</td>
<td>tracheobronchitis without AO</td>
<td>OCS – dramatic improvement</td>
<td>[11]</td>
</tr>
<tr>
<td>M (26)</td>
<td>tracheobronchitis without AO</td>
<td>OCS – complete clearance of symptoms, then steroid-dependence</td>
<td>[12]</td>
</tr>
<tr>
<td>M (25)</td>
<td>laryngitis with AO</td>
<td>OCS – some initial improvement, then upper airway obstruction requiring tracheotomy</td>
<td>[24]</td>
</tr>
<tr>
<td>F (22)</td>
<td>laryngitis with AO</td>
<td>ICS, OCS – improvement of tracheobronchitis, persistence of tracheobronchial deformity</td>
<td>[present case]</td>
</tr>
<tr>
<td>M (29)</td>
<td>tracheobronchitis with AO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data in curved parentheses are patient age. F: female; M: male; AO: airway obstruction; OCS: oral steroids; ICS: inhaled steroids.

Discussion

The authors report the case of a young patient with CD, who developed tracheobronchial inflammation and stenosis several years after the onset of his intestinal disease and colectomy. While clinically significant pulmonary involvement of CD is rare, subclinical respiratory involvement has well been described [4, 5, 13]. In inflammatory bowel disease (IBD) in general, many forms of bronchial involvement typically develop after colectomy [14]. This feature is especially true in patients with ulcerative colitis [6, 11].

In the present case the authors discussed other disease processes that may produce a close clinical, endoscopic, and radiological picture. Relapsing polychondritis was excluded on the basis of clinical, radiological and histological findings [15]. Tracheal tuberculosis was also excluded due to absence of mycobacteria in repeated sputum and BAL cultures, and a clinical improvement over twelve months of steroid therapy. Although sarcoidosis and CD may coexist in the same patient [16, 17], the absence of typical sarcoid granulomata in bronchial biopsies, and the lack of evidence for extrapulmonary sarcoid involvement led the authors to rule out sarcoidosis. The absence of cutaneous pustules excluded a diagnosis of Sweet’s syndrome [18]. Tracheobronchial involvement in Wegener’s granulomatosis may present as ulcerating tracheobronchitis or tracheal-bronchial stenosis [19, 20]. The extent of tracheal and bronchial lesions observed in the current patient, the absence of histological findings suggestive of Wegener’s granulomatosis, the lack of cytoplasmic-antineutrophil cytoplasmic antibodies (c-ANCA), no extrapulmonary involvement and slow progression without specific treatment all made, in the authors’ opinion, the diagnosis of Wegener’s granulomatosis unlikely. Of note is that detectable perinuclear (p)-ANCA are a frequent finding in patients with ulcerative colitis and may occur in up to 20% of patients with CD [6, 21]. Ulcerative colitis may also affect the upper respiratory tract [6, 11, 22, 23]. In the current patient, however, the diagnosis of Crohn’s disease was initially clearly established on histological grounds of the resected bowel specimen.

Although the literature gives several descriptions of tracheobronchial involvement in CD (table 2), the extent of involvement seen in the current patient, with bronchial wall thickening, stenosis of the trachea and both mainstem bronchi seems quite unusual [6]. The initial lesion of tracheobronchial CD seems to be mucosal inflammation, with symptoms of cough and dyspnoea [6, 10–12]. In one case, the friable and haemorrhagic granulation tissue severely obstructed the tracheal lumen [6]. Mucosal inflammation may be accompanied by bronchial suppuration. Inflammation and attending obstruction may be so extensive, that this may lead to acute respiratory failure, requiring intubation and mechanical ventilation [9]. All these symptoms usually respond to inhaled and/or oral steroids [6, 9–12].

The current patient may represent a more advanced and chronic stage of the same disease process. As an appropriate dose of inhaled and/or systemic steroids may rapidly improve symptoms of tracheobronchial involvement of

![Fig. 4. – Endoscopic view of tracheal bifurcation after 4 months of treatment with systemic and inhaled steroids that showed marked improvement of tracheobronchial inflammation, but a slit-like narrowing of the two mainstem bronchi (front in the bottom of the picture).](image-url)
airway involvement of Crohn disease exists for early investigation and vigorous treatment of mal tracheobronchial patency. It is believed that the need associated mucosal inflammation, but could not restore nor-

diges. This developed despite long-term, but possibly too low-dosed inhaled steroids. Higher dose inhaled steroids associated with oral steroids, which were reported to be rapidly effective in steroids, resulting in rapid symptomatic improvement. The systemic effects of this mode of treatment remain, however, to be evaluated.

In summary, this case illustrates an advanced stage of tracheal and bronchopulmonally involvement in Crohn’s disease with marked tracheobronchial obstruction, due to the extensive bronchial deformities. This developed despite long-term, but possibly too low-dosed inhaled steroids. Higher dose inhaled steroids associated with oral steroids, which were reported to be rapidly effective in cases of bronchopulmonary CD [6], diminished the associated mucosal inflammation, but could not restore normal tracheobronchial patency. It is believed that the need exists for early investigation and vigorous treatment of airway involvement of Crohn’s disease.

References