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Studying the respiratory microbiome provides critical novel insight into respiratory disease 

pathogenesis which may improve clinical management, and we should strive to standardise 

study design, laboratory procedures and statistical methods in the field. 
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Over the last decade, researchers have begun to unravel the causes and 

consequences of variation within the respiratory microbiota, developing a more profound 

understanding of its role in the pathogenesis of pulmonary disease to improve clinical 

management. Developments in culture-independent identification of bacterial species have 

provided faster and more cost effective methods to characterise niche-specifc microbial 

ecosystems. Historically, the gut has been the niche of focus for human microbiome 

research, but recent studies have revealed an unexpected diversity of bacteria in both the 

upper and lower airways, linking community composition to a number of respiratory 

diseases, including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and 

acute infections [1]. Monitoring temporal changes in community composition of the 

respiratory microbiota can reveal the influence of host and environmental drivers on 

ecosystem behaviour, as well as the consequences of infection susceptibility or severity, and 

treatment effects. Here we outline current best practices and upcoming developments for 

respiratory microbiome research and potential clinical applications. 

 

Study Design 

 So far, in respiratory microbiome study design, we have learned that crucial elements 

in generating valid, useful results include clear research questions, power calculations, 

enrolment of sufficient numbers of subjects and controls, robust sampling and exhaustive 

patient information collection. Although this applies to any well-designed population-based or 

clinical study, we also need to carefully consider possible confounding effects of a broad 

range of environmental and host characteristics on microbiome composition [1, 2]. The first 

pioneering cross-sectional studies linked altered microbial community structure and 

composition to disease state [3, 4], but longitudinal sampling is needed to fully understand 

the causes and long-term clinical outcomes of variation in respiratory microbiota. For 

example, recent well-characterised healthy birth cohorts have shown the dynamics of 

nasopharyngeal microbiota development in relation to lifestyle factors [5, 6], and have 

revealed marked shifts in microbial community composition associated with acute respiratory 

infections [7, 8]. Intensive follow-up of CF [9, 10] and COPD [11] patients demonstrated 

changes in the airway microbiome composition preceding symptom onset, suggesting that 

dysbiosis coupled to a dysregulated host immune response could be at the basis of disease 

progression [12]. Support for the potential role for the respiratory microbiome in early 

disease pathogenesis is evident in early childhood, as microbial communities with fewer 

commensals and more potential pathogens are associated with consecutive wheeze and 

asthma [8]. So far, every study of respiratory microbiota in relation to any lung disease, has 



revealed clear aberrations of microbial community composition from the healthy state, 

redefining commonly accepted pathophysiological concepts in respiratory disease 

pathogenesis [12].   

 

Sample Collection 

 With respect to anatomy and site of sampling, the respiratory tract is not a single 

uniform system, but consists of interconnected niches harbouring distinct microbial 

communities that depend highly on local microenvironmental conditions. Therefore, when 

designing a new microbiome study, the appropriate sampling niche will largely depend on 

research question, hypothesis and target population. Key procedural practicalities also 

require consideration; for example, sampling the lower respiratory tract (LRT) requires 

invasive bronchoscopic procedures, limiting sample size, age-groups to be studied, and 

frequency of repeated sampling. To overcome this lack of access to the lungs, many studies 

use the easily accessible upper respiratory tract (URT) which is considered the likely source 

community of the lungs as well as a reservoir for most respiratory pathogens [12, 13]. In 

healthy adults, microbial colonisation of the LRT is assumed to originate from micro-

aspiration of the oropharyngeal ‘flora’, and hence, the oropharynx can be used, albeit 

imperfect, as a proxy for the lungs. In children, however, both the nasopharynx and 

oropharynx are likely sources of microbial seeding to the LRT, probably resulting from 

anatomical differences, nasal breathing, and higher production of nasal secretions by 

children [14, 15], further limiting result extrapolation. In chronic lung diseases such as CF 

and COPD, the URT and LRT communities appear to become segregated with increasing 

disease duration. This is probably due to chronic inflammation, failure of lung clearance 

mechanisms, and repeated antimicrobial treatment resulting in localised selection and 

evolution of independent communities, the latter rendering LRT sampling from multiple sites 

mandatory to obtain meaningful results [16, 17].   

 

Sample Processing 

 An important aspect to consider throughout the design and execution of a respiratory 

microbiome study is the risk of and control for contamination. The respiratory tract harbours 

low-density bacterial communities, with microbial densities dropping along the way from the 

URT to the LRT [14, 18]. As a result, environmental DNA introduction during sample 

collection and processing becomes a likely threat, and can entirely overrule the true 



microbial signal [18]. Sampling of the LRT particularly carries a high risk of microbial 

carryover from the URT, and so accurate sampling should be undertaken by well-trained and 

consistent personnel to  reduce the risk of contamination. During transportation, samples 

should be kept cooled in appropriate storage media, and then processed and stored at -80 

C as soon as possible to prevent selective bacterial outgrowth. Additionally, contamination 

from the laboratory environment and the reagents used for sample processing can 

significantly influence results from low-biomass microbial communities [19]. Implementing 

proper ‘negative’ controls for all sampling, storage and laboratory procedures allows for later 

comparison and identification of potentially confounding environmental signals (for more 

details see [20]). Variations in methodology and batches can also affect results, highlighting 

the importance of clean working during DNA extraction and using fully optimised methods for 

the specific sample type. In addition to contamination, the extraction method can also affect 

the quality of the data and care should be taken to use methods which do not bias the 

bacteria extracted from the samples [18]. Including ‘positive’ controls in the form of mock 

communities, will allow for adequate control and comparison between sequencing runs, 

laboratories and institutes [13].  

 

Sequencing Platforms 

 Regarding sequencing platforms, amplicon sequencing is currently the most commonly 

used method for determining the microbial community composition and targets the bacterial 

16S ribosomal RNA (rRNA) gene, containing highly conserved as well as hypervariable 

regions. This targeted approach has revealed a wealth of information regarding community 

compostion and dynamics. However, the taxonomic resolution provided by 16S rRNA 

sequencing is limited due to the short target region length, complicating accurate species- 

and strain-level identification. In comparison, metagenomic sequencing captures the entire 

microbial genomic content, including bacteria, viruses and eukaryotes, and allows for 

microbial characterisation at the deepest taxonomic levels as well as functional potential 

profiling. However, applying this technique to low-biomass respiratory samples is 

challenging, as genome assembly requires high numbers of sequencing reads per sample, 

which makes detection of low-abundant species difficult, and increases the risk of 

contamination [21].  

 

  



Data Handling 

 Once data is generated, the bioinformatics and statistical methods required to analyse 

the large amounts of raw DNA reads generated by sequencing can be daunting. Initially, raw 

reads are filtered to remove sequencing errors and are assembled into complete sequences, 

after which the sequences are grouped based on similarity and assigned taxonomic names 

to reveal their identities. Several bioinformatics pipelines are freely available for data pre-

processing, including Qiime [22] and mothur [23]. Each resulting microbial profile shows the 

abundance of individual species relative to the entire bacterial population within a sample, 

and contains many zero abundances, demanding nonparametric statistical methods 

developed specifically for handling microbiome data [24]. Characterising microbial 

development over time requires multiple measurements of the same individual, further 

complicating data analysis, but several approaches have been proposed to correct for 

repeated measures [25, 26]. The increasing application of machine-learning techniques that 

perform predictive modelling of clinical outcomes from microbial profiles combined with host 

and environmental characteristics, is a promising development [27]. However, the study of 

temporal microbiome dynamics, especially while accounting for confounding factors, remains 

in its infancy [24]. 

 

Clinical Applications  

 In the era of the 100,000 Genome Project and the launch of the NHS Genomic 

Medicine Service, it is clear that sequencing techniques are not only more accessible but are 

also becoming more integral to the clinical environment. In the clinic, identification by culture 

still dominates pathogen detection, and although quantitative methods such as qPCR are 

increasingly available, applications of sequencing technologies are lacking. Cost 

effectiveness and efficiency of sample and data processing are currently being improved to 

enable clinical implementation of sequencing methods. Single-use sequencing applications 

are being developed, as are faster methods of DNA extraction and library preparation [28]. 

Technological and bioinformatic advances are in the pipeline to improve detection of subtle 

strain-specific variation within the target region [24]. For applying sequencing at the point of 

care, the portable, low cost, real-time DNA sequencer Oxford Nanopore MinION has real 

potential with its ability to rapidly sequence the bacterial 16S gene, even up to strain-specific 

resolution [29]. The emergence of real-time sequencing technologies could dramatically 

influence diagnostic methods through accurate species identification and quantification 

within a clinically relevant time frame.  



Research Priorities 

 To move closer towards clinical applications, comparative and meta-analyses must 

combine results from different cohorts to define actionable thresholds of microbial 

abundance. Current methodological heterogeneity restricts comparability across institutes, 

and so by underlining essential aspects of study design including consistent sample 

collection and processing, adequate contamination controls, and longitudinal sampling 

(summarised in the Figure and Box 1), we hope to encourage reaching a consensus on 

solid, robust methodology for respiratory microbiota research. Our increased understanding 

of respiratory disease pathogenesis will contribute to reshaping clinical diagnostic, 

preventative and therapeutic strategies. Important challenges remain to integrate the 

advances within microbiota research into everyday medical practice, and future efforts 

should prioritise standardisation of protocols and analysis, adaptation of technology for 

application in the field including remote settings, and collaboration across countries and 

disciplines (Box 2). However, current progress in respiratory microbiota research certainly 

provides a promising platform for the clinical application of culture-independent techniques in 

the future.  

  

 Box 1 | Essentials for respiratory microbiome studies: 

 

 Longitudinal study design 

 Appropriate power calculations 

 Consistent sampling 

 Appropriate niche (proxy) 

 Minimise contamination at all stages 

 Contamination controls at all stages 

 Robust quality checks 

 Consistent bioinformatic processing 



 Box 2 | Research priorities for future studies: 

 

 International platforms for communication 

 Uniform sampling and transport protocols 

 Standardised controls across laboratories  

 Agreement on handling complex data 

 Adapt technology for remote settings 

 Collaboration between research disciplines 
(clinics, microbiology, molecular biology, 
ecology, bioinformatics) 

 Invest in (interdisciplinary) training 
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Figure. Challenges in characterising the respiratory microbiome.  

Niche-specific communities reside in the different parts of the URT and LRT, and 

therefore sampling site should depend on the research question and population studied. 

During health and acute URTI or LRTI, the LRT is transiently colonised with microbes 

from the URT (oropharynx for adults, naso- and oropharynx for children), while in chronic 

lung diseases, over time local selection and community assembly leads to differences 

between URT and LRT assemblages. In general, the local bacterial density in the 

respiratory  tract is low, further decreasing when descending towards the LRT. Therefore, 

working with low-biomass samples requires careful sampling procedures and laboratory 

handling, including appropriate negative and positive controls to acquire reliable results. 

Microbial development over time is affected by environmental stimuli including crowding 

factors and pollution, and is altered in various acute and chronic diseases, so repeated 

sampling and exhaustive data collection of the same subjects over time is required to 

study cause-consequence relationships and estimate environment-induced variation. 

Appropriate bioinformatic processing of the sequencing data is required before robust 

statistical analysis is executed, which preferably accounts for covariates and repeated 

measures where relevant.  

Abbreviations: URT = upper respiratory tract; LRT = lower respiratory tract; URTI = upper 

respiratory tract infection; LRTI = lower respiratory tract infection. 

 



 

 

 

 

 


